
Distributed Computing Column 72
Annual Review 2018

Jennifer L. Welch
Department of Computer Science and Engineering

Texas A&M University, College Station, TX 77843-3112, USA
welch@cse.tamu.edu

As with prior December issues, this issue is devoted to a review of notable events related to
distributed computing that occurred during the year.

First, congratulations to Bowen Alpern and Fred Schneider, winners of the 2018 Edsger W.
Dijkstra Prize in Distributed Computing for their paper “Defining Liveness”! Their paper appeared
in Information Processing Letters in October 1985. The prize is jointly sponsored by ACM and
EATCS, and is given alternately at PODC1 and DISC2; this year it was given at PODC. This paper
formally defined liveness properties of concurrent and distributed algorithms for the first time and
also proved that every trace property is the conjunction of a safety property and a liveness property.
The full citation can be found at http://www.podc.org/dijkstra/2018-dijkstra-prize/. I am
delighted to include in this column the text of the remarks that Fred and Bowen gave at PODC
when the award was presented to them.

Congratulations as well to Rati Gelashvili, who received the 2018 Principles of Distributed
Computing Doctoral Dissertation Award! His thesis is entitled “On the Complexity of Synchro-
nization” and was supervised by Professor Nir Shavit at the Massachusetts Institute of Technology.
The award is jointly sponsored by PODC and DISC, and was given at DISC this year. The ci-
tation appears at http://www.podc.org/dissertation/2018-dissertation-award/. The thesis
introduces a complexity-based hierarchy for concurrent objects based on combinations of weaker
synchronization instructions rather than those considered in the classical consensus hierarchy. His
new approach reflects the fact that actual multiprocessors let processes apply supported atomic
instructions to arbitrary memory locations. The thesis also includes a linear-space lower bound for
anonymous randomized consensus.

1ACM Symposium on Principles of Distributed Computing
2EATCS Symposium on Distributed Computing

1

Avery Miller has contributed a review of SIROCCO3 2018. The SIROCCO Prize for Innovation
in Distributed Computing was given to Zvi Lotker for his work “in network algorithms, but espe-
cially for his creative contributions to the theory of wireless and social networks.” The full laudatio
can be found at https://sites.google.com/view/sirocco2018/sirocco-prize?authuser=0.
Tal Navon received the best student paper award for her paper “Mixed Fault Tolerance in Server As-
signment: Combining Reinforcement and Backup” coauthored with David Peleg. Congratulations
to Zvi, Tal, and David!

Next, Naama Ben-David provides us with a review of PODC 2018. Best student paper awards
were given to Guy Goren for his paper with Yoram Moses titled “Silence” and to Thibault Rieu-
tord and Yuan He for their paper with Petr Kuznetsov titled “An Asynchronous Computability
Theorem for Fair Adversaries”. Leonid Barenboim, Michael Elkin and Uri Goldenberg received the
best paper award for their paper titled “Locally-Iterative Distributed (Delta + 1)-Coloring below
Szegedy-Vishwanathan Barrier, and Applications to Self-Stabilization and to Restricted-Bandwidth
Models”. Congratulations to Guy, Yoram, Thibault, Yuan, Petr, Leonid, Michael and Uri!

The column closes with a review of DISC 2018 by Aditya Biradavolu and Saptaparni Kumar.
Best paper awards were given to Ali Mashreghi and Valerie King for their paper “Broadcast and
Minimum Spanning Tree with o(m) Messages in the Asynchronous CONGEST Model” and to Gre-
gory Chockler and Alexey Gotsman for their paper “Multi-Shot Distributed Transaction Commit”.
Congratulations to Ali, Valerie, Gregory, and Alexey!

Many thanks to Bowen, Fred, Avery, Naama, Aditya and Saptaparni for their contributions!

Call for contributions: I welcome suggestions for material to include in this column, including
news, reviews, open problems, tutorials and surveys, either exposing the community to new and
interesting topics, or providing new insight on well-studied topics by organizing them in new ways.

3International Colloquium on Structural Information and Communication Complexity

ACM SIGACT News 2 December 2018 Vol. 49, No. 4

History and Context for Defining Liveness4, Winner 2018 Edsger
W. Dijkstra Prize

Fred Schneider
Department of Computer and Information Sciences

Department of Computer Science, Gates Hall
Cornell University, Ithaca, New York, 14853

fbs@cs.cornell.edu

It’s great to be back at PODC. I attended this conference religiously through 1992. It’s inter-
esting to see what has changed but also what has not changed in 25 years. And I can’t think of
a happier excuse to be back. All of us know how gratifying it is to see that our work is having
impact, and that’s what this award signifies.

To win an award that carries Dijkstra’s name is especially meaningful for me. As a graduate
student, I read and reread Dijkstra’s work; it changed the way I looked at systems research and
the research enterprise. (Bowen will offer some remarks that expand on this theme.) I then had
a chance to meet Dijkstra when I served as teaching assistant for a 1-week short course he taught
in Santa Cruz. That was the summer following my first year as an assistant professor at Cornell;
my colleague David Gries had gotten me the assistantship. I guess I did OK, because Dijkstra and
his wife Ria subsequently invited me to visit their home in Nuenen (The Netherlands) for a week.
What a thrill. I subsequently saw Dijkstra at technical meetings and socially at least once a year,
until he passed away. So, yes, I have many Dijkstra stories to tell. Catch me after dessert for those.

You can read our paper “Defining Liveness” (it’s only 5 pages!) if you are interested in the
technical details. I thought that instead I would talk about how we developed those ideas and
where things stand today. I’m always fascinated by the history behind discoveries, and I suspect
that I’m not alone in enjoying this “academic gossip”.

The idea of proving programs was discussed by Turing in 1949 (where he proved that a sub-
routine for factorial computed the desired result).1 Starting in the early 1960’s through the late
1970’s, the CS research community embraced the idea of writing proofs for programs. In those
days, you would “prove the program correct”. And there was a debate about whether to prove

4Bowen Alpern and Fred B. Schneider. Defining Liveness. Information Processing Letters 21, 4 (October 1985),
181–185.

1Turing, A.M. Checking a large routine. Report of a Conference on High Speed Automatic Calculating Machines,
University Mathematics Laboratory, Cambridge, 67-69. For a discussion of the proof, see Morris, F.L., and C.B.
Jones. An early program proof by Alan Turing. Annals of the History of Computing 6, 2 (April 1984), 139–143.

ACM SIGACT News 3 December 2018 Vol. 49, No. 4

“partial correctness” versus “total correctness”. Floyd’s 1967 paper2 had showed how to attach
assertions to the edges of a flowchart; Hoare’s 1969 paper3 implemented this basic approach as a
logic involving pre- and postconditions.

Lamport in a 1977 paper4 showed how to “prove correctness” of multiprocess programs “to solve
synchronization problems”. He extended Floyd’s work, introducing the terms “safety property” and
“liveness property” to abstractly characterize different kinds of things you might want to prove.
Synchronization protocols didn’t produce answers, and termination was generally considered a
failing, so proving partial or total correctness was not a useful goal. Petri nets were all the rage
back then, as a specification language and as a way to simulate concurrent systems. The theory of
Petri nets introduced the terms “liveness” and “boundedness” for describing how the assignment
of a Petri net’s “tokens” to its “places” could evolve; Petri net “safety” was a specific form of
boundedness. Lamport borrowed those names for use in his verification work, but he gave the
terms different meanings.

Fast forward to the mid 1980’s. CS now had a formal methods research community that was
devoted to program verification, and those researchers understood that the real problem was not
verifying partial or total correctness but the more general problem of proving that a program
satisfied a given specification. Some researchers were exploring temporal logics for this; others were
exploring automata, because you could perform automated analysis with automata.

Bowen Alpern, who was my Ph.D. student at Cornell, was engaged in thesis research that had a
foot in both camps. He understood that you could specify rich sets of program executions by using
so-called Buchi automata (which were known to be models for temporal logic formulas). A Buchi
automaton was a finite-state automaton that accepted infinite sequences. Specifically, it rejected
sequences of input symbols that forced the automaton to make an undefined transition or that did
not infinitely-often enter the automaton’s accepting states. Not all input symbols had transitions
defined in every automaton state, and not every automaton state would be an accepting state;
one would formulate a Buchi automaton to accept exactly those program executions (modeled as
infinite sequences of program states) that satisfied the property of interest.

But Bowen didn’t pursue automated analysis for Buchi automata. Instead, he showed how
to perform program verification by creating a correspondence between (i) program states and
automaton states, and (ii) program transitions and automaton transitions. This correspondence
was validated by discharging proof obligations that resembled the verification conditions you would
have with Floyd’s method or Hoare’s logic.

First, you would show that the automaton wouldn’t make an undefined transition when reading
the state sequence corresponding to a program execution. The obligations here involved construct-
ing invariants that related program states and automaton states. Second, you would show that the
automaton could not remain forever in non-accepting states. These obligations involved exhibiting
variant or well-founded functions, which decreased in value with each program step and evaluated
to a minimal element when the next program step was guaranteed to cause transition into an
accepting state.

As it happens, Leslie Lamport and I were both speakers at a 2-week NATO Advanced Course
on Distributed Systems at Technical University of Munich in April 1984. Lamport had been using

2Floyd, R.W. Assigning meanings to programs. Proc. Symposia in Applied Mathematics 19, 1967, 19–31.
3Hoare, C.A.R. An axiomatic basis for computer programming. CACM 12, 10 (Oct. 1969), 576–580.
4Lamport, L. Proving the correctness of multiprocess programs. IEEE Trans. on Software Engineering SE-3, 2

(March 1977), 125–143.

ACM SIGACT News 4 December 2018 Vol. 49, No. 4

a temporal logic for reasoning about concurrent programs, and he planned to talk about that
work in Munich. (Ironically, my lectures in Munich concerned Lamport’s state machine approach,
and those presentations were the genesis for my well known survey paper on the subject.) It
was natural in motivating the use of his temporal logic for Lamport to give a formal definition of
safety properties, since that enabled him to argue that his temporal logic had sufficient expressive
power. He shared with me this formal definition of safety properties. He also wanted to give an
expressiveness argument for liveness properties, but he had been unable to devise a formal definition
of liveness. He shared that challenge with me, too.

Safety properties assert that “bad things” don’t happen. That can be formalized as eschewing
irremediable finite prefixes of executions; the “bad thing” is thus formalized as a set of finite
prefixes. When I told Bowen about this definition, he quickly saw the connection to his work on
Buchi automata: The “bad prefixes” of safety properties were those prefixes that caused the Buchi
automaton to make an undefined transition.

By returning to the full acceptance criteria for Buchi automata, a formal definition of liveness
now became obvious. A liveness property had to be something that stipulated every prefix would
have a continuation that caused acceptance by the Buchi automaton—that is, a continuation that
infinitely-often would cause the automaton to enter accepting states. So the essence of liveness was:
no matter what the finite prefix, an extension could be accepted by the Buchi automaton.

I told Lamport about this proposed formal definition for liveness. He, in turn, told Gordon
Plotkin, who had been experimenting with using topology to reason about classes of properties
for concurrent programs. Plotkin hated our liveness definition, and he mailed us a letter, giving a
topological formulation (which he attributed to a paper by Mike Smyth5) to present his objections.
That letter was 5 ½ handwritten pages, and I still have a copy (albeit scanned).

Bowen and I were not convinced that the concerns Plotkin raised were reasons to abandon our
proposed liveness definition. Moreover, Plotkin’s letter explained that Lamport’s formal definition
of safety properties corresponded to the “closed sets” in a natural topology, and our liveness defi-
nition corresponded to the “dense sets”. To somebody well versed in topology (which is not me),
the fact that any set is the intersection of a closed set with a dense set follows trivially from the
definitions of closed and dense sets. This meant that we not only had a liveness definition but we
also had a proof that every property was the intersection (conjunction, when formalized in a logic)
of a safety property and a liveness property! Such a decomposition result seemed to us to be a
truly compelling rationale in support of our liveness definition.

So let’s take stock of where we were.
Bowen and I now had formal definitions along with a proof that safety and liveness were an

orthogonal basis for all “properties” (though I will return to the notion of properties shortly). Bowen
also had shown that safety properties required invariance proofs whereas liveness properties required
variant functions.6 Thus, there was a benefit to performing that decomposition—it told you what
proof technique to use for verifying each of the different pieces of an arbitrary property. Finally,
we had also established that temporal logics were not required for proving arbitrary properties of
concurrent programs; the kinds of proof obligations used in Floyd’s original paper were sufficient.
(Recall, showing that temporal logics were not needed was the original goal of Bowen’s Ph.D. thesis.
Those results can be found in a TOPLAS paper7 that has mostly been ignored.)

5Michael B. Smyth. Power Domains and Predicate Transformers: A Topological View. ICALP 1983, 662–675.
6Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed Computing 2, 3 (1987),

117–126.
7Bowen Alpern and Fred B. Schneider. Verifying temporal properties without temporal logic. TOPLAS 11, 1

ACM SIGACT News 5 December 2018 Vol. 49, No. 4

Now, let’s skip ahead 30 years. Safety and liveness have decidedly entered into the vernacular—
which is to say, they are used without citation, alas. But, after 30 years, it has also become clear
that the definition we had been using for “property” was simplistic. The defining characteristic of
a “property” (today, often called a “trace property”) is a predicate that says whether each single
execution in isolation is in that property. Yet many important aspects of system execution cannot
be formalized in terms of such predicates: confidentiality, integrity, and service-level agreements,
are examples. These are sets of executions that cannot be formalized as checks on an individual
execution in isolation—they involve checks on pairs of executions or larger subsets. For example,
confidentiality involves pairs of executions because it is a statement about correlation between the
value of some variable and the value of some secret; checking for correlation requires looking at
pairs of executions.

There’s now some good news and some bad news. The good news: the safety/liveness orthogonal
basis still works. Michael Clarkson and I introduced8 the idea of “hyper-properties” as sets of sets
of execution sequences, and we showed that all hyper-properties could be decomposed into hyper-
safety (finite set of finite sequences) and hyper-liveness (set of infinite sequences can extend a set of
prefixes). The bad news: “refinement” which was roughly “subset” for trace properties, becomes
much more complicated for hyper-properties. Researchers are starting to develop proof methods for
classes of hyper-properties, but nobody has identified a small set of building-block proof obligations
like invariance and variant functions. So there is much work still to be done. And it is important
work, because proving system security grows ever more crucial as we come to depend more and
more on networked information systems.

With that, you are up to date on safety/liveness. And now you also know why and how our
Defining Liveness paper came into being. Again, thank you for this honor.

(January 1989), 147–167.
8Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security 18, 6 (September

2010), 1157–1210.

ACM SIGACT News 6 December 2018 Vol. 49, No. 4

Edsger W. Dijkstra: The Man Behind the Prize

Bowen Alpern
Department of Computer Science

Lehman College, CUNY
New York, USA

bowen.alpern@lehman.cuny.edu

It would be understatement to say that news of this year’s Dijkstra award came to me as
a surprise. In fact, it put me into a rather profound funk, occasioning unsought reflection on my
arguably misspent adulthood. It has been some time since I have done significant scientific research.
So, I am quite humbled to be here.

I did not really know Dijkstra, but I certainly knew of him. With Fred and David Gries on the
faculty, his influence on the Computer Science Department at Cornell was substantial when I was
a graduate student. (I trust it still is.)

But I had actually encountered Dijkstra’s shadow before coming to Cornell. He and I had
overlapped briefly in the employ of Burroughs Corporation. He was their sole research fellow; I,
part of a compiler implementation effort on a Cobol-like language for a check-processing machine.

Our paths did not cross, but I did stumble onto a stash of EWD reports. The EWD report is a
unique literary form; roughly a cross between samizdat—the self-published manuscripts of Soviet
dissidents—and contemporary blog posts, ranging in content from highly technical results to trip
reports dripping with gossip. They are archived online at the University of Texas1. I commend
them to your attention. I confess it was a quiet tirade about cheese that stayed with me over the
years.

These past weeks, I have been rereading with some urgency these reports, his book (A Discipline
of Programming), and his Turing Award lecture (“The Humble Programmer”). Mine was not the
rigorous, depth-first close reading his work deserves, but a lazy, breadth-first perusal more congenial
to my temperament.

Dijkstra felt it incumbent on the programmer to produce not only a running program but also a
convincing argument that the program met its specification. He famously observed that no amount
of testing could provide such an argument (EWD 361). The only thing that would satisfy was
an “elegant mathematical proof.” As Fred indicated, my thesis tried to show how to adapt known
techniques for proving correctness of sequential programs to prove properties of concurrent ones.

1http://www.cs.utexas.edu/ EWD/

ACM SIGACT News 7 December 2018 Vol. 49, No. 4

But, Dijkstra wanted more from the programmer than facility with proof techniques: “Besides
a mathematical inclination, an exceptionally good mastery of [a natural language] is the most vital
asset of a competent programmer.” (EWD 498). “A programmer must be able to express himself
extremely well both in a natural language and in a formal system. The need for extreme mastery
of a natural language is twofold. Firstly, ...our natural language is so intimately tied with what we
call understanding that we must be able to use it to express what we have understood.” It is also
“an indispensable tool for thinking, in particular when new concepts have to be introduced. And
this is what a programmer has to do all the time...in order to be able to find, to describe and to
understand his own solution to [a] problem.” (EWD 361).

As evidence of the crucial role that natural language plays in our field, it might be good here to
remember some of the “new concepts” Dijkstra introduced (or helped to introduce) into the lexi-
con of “Computing Science”: critical section, cooperating sequential processes, semaphores, deadly
embrace, the Banker’s algorithm (for deadlock avoidance), separation of concerns, predicate trans-
formers, weakest preconditions, guarded commands, structured programming, self-stabilization,
on-the-fly garbage collection, among others.

Notice that Dijkstra was very careful in his choice of metaphors. Sometimes they did not come
easily. But he brought the same exacting discipline to his writing as he did to his programming.
He wrote well!

It occurs to me that this time I ultimately was reading his work as much for his style as for his
content. The style mirrored the man: clear, concise, passionate, quirky, uncompromising, precise,
scathing, brilliant, and wickedly funny. He had the audacity of his convictions and the integrity of
Don Quixote. He abhorred the vague, the bloated, the ugly, and the sloppy. He did not suffer fools
gladly.

The world needs more such voices.
Part of Dijkstra’s genius lay in his ability to choreograph the dance between his imagery and

his formalism. He demanded, for each of his metaphors, a precise definition that would render it
amenable to rigorous formal manipulation. He delighted in the often unexpected insights that were
offspring to this felicitous union of poetry and mathematics. I take deep satisfaction in receiving
an award in his name for the work Fred and I did to provide such a definition for Leslie Lamport’s
liveness metaphor—a definition that illuminated the full mathematical grandeur of the dichotomy
that Lamport had intuited between safety and liveness.

ACM SIGACT News 8 December 2018 Vol. 49, No. 4

SIROCCO 2018 Review

Avery Miller
University of Manitoba

Winnipeg, Manitoba, Canada
avery.miller@umanitoba.ca

The International Colloquium on Structural Information and Communication Complexity (SIROCCO)
is devoted to the study of decentralized systems consisting of multiple communicating entities, with
a special focus on better understanding how knowledge and communication affect the feasibility
and efficiency of solving tasks in such systems.

The conference turned 25 this year, and I am proud to say that I share its birthplace: Ottawa,
Canada (unfortunately, 11-year-old Avery did not have a paper to submit to the first one). Another
milestone is that this was the first SIROCCO to be held in Israel. The venue: a kibbutz called
Ma’ale HaHamisha perched high up in the Judean Hills near Jerusalem.

The sunset view in the photo above served as the backdrop for the opening reception, where,
along with a buffet of Middle Eastern delicacies (the first of many), we were treated to two talks
celebrating the SIROCCO Jubilee. The first was a historical retrospective, by Pierre Fraigniaud,
that took us through a photographic chronology of the 24 previous SIROCCO venues and their
participants. Although some of us have only recently started attending SIROCCO, it is clear that

ACM SIGACT News 9 December 2018 Vol. 49, No. 4

this is a close-knit and welcoming community that also happens to have fine taste in conference
locales. The second presentation was a scientific retrospective, by David Peleg, that outlined
several major lines of research whose humble origins can be traced back to a SIROCCO paper.
This served as a reminder of the necessity of holding smaller conferences, where perhaps budding,
incomplete, or “less popular” research ideas and results can be brought forward into the spotlight.
The stage was now set and the bar was set high for SIROCCO #25, and it did not disappoint! This
year’s program featured four keynote speakers, two talks given by the winners of the SIROCCO
Prize for Innovation in Distributed Computing and the Best Student Paper award, twenty-three
presentations of full papers, and eight brief announcements. What follows is a summary of the
program, and then a short description of our half-day excursion to the Old City of Jerusalem.

The Keynote Talks

David Peleg: “Realizability of Graph Specifications”
Given a graph G, one can associate a vector 〈d1, . . . , dn〉 where each
di represents the degree of vertex i. The dual problem, studied
by Erdős and Gallai [6], is to characterize, for a given a vector
〈d1, . . . , dn〉, when there is a graph that realizes this degree sequence.
In this talk, the problem was generalized to any given type of graph
profile that can be specified by an integer sequence. Two central
questions are: characterize when a sequence is realizable, and, de-
vise an algorithm that will produce a realizing graph for a given
sequence. Several solved examples were given, however, the presen-
tation asked more questions than it answered, practically inviting

us to get started immediately on exploring these new avenues for research.

Seth Pettie: “The Distributed Lovász Local Lemma Problem”
The Lovász Local Lemma (LLL) is a common tool used in the
probabilistic method to guarantee the existence of certain combi-
natorial objects. This can be used to show that good solutions to
certain problems exist, but it is unsatisfying to designers of prac-
tical algorithms. This talk discusses the Algorithmic Distributed
LLL problem: how to construct the combinatorial objects guaran-
teed by the LLL in a distributed way in the LOCAL model. The
talk presented several interesting results: the problem demonstrates
an exponential gap between the deterministic and random LOCAL
models; randomized Distributed LLL is complete for sublogarithmic

randomized time; and, the complexity of deterministic Distributed LLL is inextricably linked to
deterministically computing network decompositions.

ACM SIGACT News 10 December 2018 Vol. 49, No. 4

Kurt Mehlhorn: “On Fair Division for Indivisible Goods”
Consider a collection of items: each item cannot be divided into
smaller pieces, however there is a known number of copies of each
item. The items must be allocated to a set of agents, who each have
some personal opinions about how valuable each item is (with the
condition that duplicate copies of an item are not as valuable). The
goal is to maximize the fairness of the allocation, as measured by
Nash social welfare. The problem is known to be NP-complete and
APX-hard. This talk summarized some previous approaches based
on Fisher markets that achieved constant-factor approximation al-
gorithms in the case of additive valuations, and presented a new

price-envy-free approach [5] that achieves a better approximation ratio under more general kinds
of valuations.

Claire Mathieu: “College Admissions in Practice”
Students have preferences about which college they want to attend,
and colleges have preferences about which students they want to ad-
mit. The stable marriage problem involves taking the rankings by
all parties and partnering them up such that there is no pair (A,B)
where A and B would both prefer to be matched together instead of
their current partner. The Gale-Shapley algorithm is the standard
solution, but in the case of college admissions in France, certain
additional constraints were imposed. The talk discussed these ad-
ditional constraints and how an adapted version of Gale-Shapley
handled them. As many members of the audience had interest and

experience in admission processes, a lively discussion ensued!

The 2018 SIROCCO Prize for Innovation in Distributed Computing

Zvi Lotker: “Taking Turing to the Theater”
Summarizing a story and identifying its critical moments: this is not
an easy task, even for humans. It seems to require an understanding
of the complete text, necessary background information, the narra-
tive style, the character development, and more. In this talk, Zvi
introduced us to his M algorithm, which is able to pinpoint critical
events in scripts (e.g., for films or theater productions) and produce
an executive summary consisting of a montage of these critical events.
Surprisingly, the algorithm only uses structural elements of the text
and how they relate to time, i.e., it does not actually “understand” a
single word. He showed us a few motivating examples produced by his
algorithm, demonstrated how to carry out the calculations ourselves,
and encouraged us to do the same analysis on our favourite movies.
Based on the discussion that arose, it seemed that many of us were
ready to dive in and explore what the algorithm can achieve and how

it can be applied.

ACM SIGACT News 11 December 2018 Vol. 49, No. 4

The Best Student Paper Award

Tal Navon, David Peleg: “Mixed Fault Tolerance in Server As-
signment: Combining Reinforcement and Backup”
In client-server systems where up to f servers might fail, one approach
to fault tolerance is to introduce redundant servers. Another method
is to “reinforce” some existing servers, at a high cost, but making them
less likely to fail. This paper considers what can be achieved using
a mixed strategy. The authors studied a variety of server placement
tasks in graphs, including dominating set, k-centers, and uncapacited
facility location. In each case, they showed how to augment known
approximation algorithms that use only redundancy, creating good
approximation algorithms that use both redundancy and reinforce-

ment.

ACM SIGACT News 12 December 2018 Vol. 49, No. 4

The Contributed Talks

Graph Algorithms

Simple and Local Independent Set Approximation
Ravi B. Boppana, Magnus M. Halldorsson, Dror Rawitz

This paper analyzes a simple 1-round distributed approximation algorithm for inde-
pendent set, due to Boppana [1, 4]: each vertex v picks a random real number xv from
[0, 1], and joins the independent set if its random number is larger than that of its neigh-
bours. The authors show that this algorithm gives a tight (∆ + 1)/2-approximation in
unweighted graphs of maximum degree ∆, which is the best possible for 1-round dis-
tributed algorithms. For weighted graphs, they provide a simple modification that
results in an asymptotic expected 0.529(∆ + 1)-approximation, which improves on the
(∆ + 1) approximation factor of the original version.

Deterministic Distributed Ruling Sets of Line Graphs.
Fabian Kuhn, Yannic Maus, Simon Weidner

An (α, β)-ruling set of a graph G is a subset R of vertices such that the distance between
any two vertices of R is at most α, and every vertex of G has distance at most β to a
vertex of R. Such sets have been used as a powerful tool in distributed graph algorithms,
e.g., for network decompositions, coloring, MIS, and shortest paths. This paper focuses
on deterministic algorithms for computing ruling sets in the CONGEST model. Further,
they define a (α, β)-ruling edge set as a subset F of edges that form an (α, β)-ruling set
in the line graph of G, and show that these can be computed particularly efficiently.

A Distributed Algorithm for Finding Hamiltonian Cycles in Random Graphs
in O(log n) Time.
Volker Turau

This paper considers distributed algorithms for finding a Hamiltonian cycle in a random
graph G(n, p) where p ≥ (log n)3/2/

√
n. They provide a randomized algorithm that

uses O(log n) rounds in the synchronous message passing model with messages of size
O(log n) and O(log n) memory per node. The probability of success approaches 1 as n
tends to infinity. The algorithm improves on the previous best known approach, which
worked for p = c log n/nδ (0 < δ ≤ 1) and used Õ(nδ) rounds.

A Deterministic Distributed 2-Approximation for Weighted Vertex Cover in
O(log n log ∆/ log2 log ∆) Rounds.
Ran Ben Basat, Guy Even, Ken-Ichi Kawarabayashi, Gregory Schwartzman

This paper considers the Minimum Weight Vertex Cover problem in the CONGEST
model. The main result is a deterministic distributed (2 + ε)-approximation algorithm

in which the number of rounds is bounded by O(log ∆
log log ∆ + log ε−1 log ∆

log2 log ∆
) when the nodes

know ∆ (although they also consider the case where ∆ is unknown). Their algorithm
builds upon the BCS algorithm [3], and improves the linear dependence on ε−1 to loga-
rithmic. Moreover, their algorithm is optimal if ε−1 = (log ∆)c. Under the assumption

ACM SIGACT News 13 December 2018 Vol. 49, No. 4

that the maximum node weight is polynomial in the size of the network, their algo-
rithm is a 2-approximation, and improves over the previous best known deterministic
2-approximation algorithm for the problem.

Online Service with Delay on a Line.
Marcin Bienkowski, Artur Kraska, Pawe l Schmidt

Consider n equidistant points on a line. At various times, “requests” are made at the
points, and a “server” can travel to the points to serve the requests. A helpful analogy
was given in the talk: one can think of a plumber receiving calls from various houses to
come fix a flooding toilet. The cost of serving a request is the distance traveled to the
point, plus a “waiting” penalty that is a function of the arrival delay, e.g., the flooding
got much worse because the plumber took a long time to arrive, which increases the
time needed to fix it. The goal is to minimize the sum of the costs to serve all of
the requests. In this paper, the authors present a deterministic O(log n)-competitive
algorithm for this problem. The high-level intuition is that, for segments of the line
that are far away from the server, we should allow many requests to accumulate before
incurring the high travel cost.

Fundamentals

Connectivity and Minimum Cut Approximation in the Broadcast Congested
Clique.
Krzysztof Nowicki, Tomasz Jurdzinski

In the Broadcast Congested Clique model, there are n nodes that communicate in
synchronous rounds, and, in each round, each node can transmit a single O(log n)-bit
message to all other nodes in the network. The nodes belong to some input graph
(not necessarily a clique) and the goal is for the nodes to compute some function of
this input graph. The authors present a deterministic algorithm that finds a maximal
spanning forest using O(log n/ log logn) rounds. They also present a randomized (1 +
ε)-approximation algorithm that finds a minimum cut using O(log n) spanning forest
computations (i.e., O(log2 n/ log log n) total rounds). They also show how their min-cut
algorithm can be used in a multi-pass semi-streaming model.

Communication Complexity in Vertex Partition Whiteboard Model.
Tomasz Jurdzinski, Krzysztof Lorys, Krzysztof Nowicki

This paper considers a k-player communication model where computation happens in
synchronous rounds. At the end of each round, each player calculates a message of size b,
and they all simultaneously send their messages to a central referee (a.k.a, whiteboard).
At the start of any round after the first, the referee shares all messages with all players,
who can use this information when computing what to send next. After r rounds,
the players must stop sending messages, and the referee computes an output based on
all of the messages it has received. The types of problems considered in this paper
are questions about an input graph G. The vertices of G are partitioned in k sets,
each player receives one of the sets as input, and the players run a protocol such that
the referee can determine a property about G, e.g., is G connected? The authors

ACM SIGACT News 14 December 2018 Vol. 49, No. 4

show that, for any fixed constant b, there is an infinite strict hierarchy of problems for
an increasing sequence of values for r (the number of rounds). Further, for deciding
connectivity in two-regular input graphs G, they prove a matching upper and lower
bound of b ∈ Θ(log n) for the class of 1-round protocols, and show that no protocols
exist with r, b ∈ O(1) simultaneously.

Two Rounds Are Enough for Reconstructing Any Graph (Class) In The
Congested Clique Model.
Pedro Montealegre, Sebastian Perez-Salazar, Ivan Rapaport, Ioan Todinca

In the congested clique model, communication proceeds in rounds: in each round, each
node v can send a different O(log n)-bit message to each node w. The authors consider
the reconstruction problem for a graph class G: a graph G with n vertices is provided
to the nodes by assigning to each node v an n-bit vector indicating which vertices of G
are neighbours of v. At termination, if G ∈ G, all nodes v must output the entire graph
G, and if G 6∈ G, all nodes must reject. A weaker version of the problem promises that
the input graph G belongs to G, and nodes must output G. The paper gives a one-
round private-coin randomized algorithm that solves the strong version w.h.p. when G
is a hereditary class. For general graph classes, they provide a two-round private-coin
randomized algorithm that solves the strong version w.h.p., a three-round deterministic
algorithm that solves the strong version, and a two-round deterministic algorithm that
solves the weak version. The main technique is to use “fingerprinting” and “error-
correcting graphs” to essentially compress large amounts of graph information while
still being able to distinguish which encoded objects represent graphs in G. It follows
that the feasibility of their technique depends only on the size of the graph class, i.e., the
amount of information that needs to be compressed. One interesting open question is
whether “recognition” (simply output 1 if G ∈ G) is any easier than full reconstruction.

Time-Bounded Influence Diffusion with Incentives.
Gennaro Cordasco, Luisa Gargano, Joseph Peters, Adele Rescigno, Ugo Vaccaro.

This paper studies “the spread of influence” in a social network. A network is modeled
by a graph G, and each node v has an associated positive integer t(v) called the influence
threshold. Initially, some set I of nodes is considered influenced, and then we proceed
in rounds: in round k, a node v joins I if at least t(v) of its neighbours were in I before
round k. The general problem is to find a small initial set so that eventually all nodes
join I. This paper extends the model and problem in two ways: first, it considers the
time it takes for the entire network to be influenced, and it also adds the possibility
of initially applying incentives that lower the threshold value t(v) at some nodes (with
the hope that this lowers the total influence time). Setting an incentive equal to t(v)
means that the node is initially influenced. The problem they consider takes the graph
G, thresholds t, and time bound λ, and a solution must find a minimum choice of
incentives that need to be applied so that all nodes in G are influenced within λ rounds.
They provide a linear-time greedy algorithm for paths, and polynomial-time algorithms
for trees and complete networks.

Brief Announcement: A Self-Stabilizing Algorithm for Maximal Matching in
Link-Register Model.
George Manoussakis, Johanne Cohen, Laurence Pilard, Devan Sohier

ACM SIGACT News 15 December 2018 Vol. 49, No. 4

Consider a graph G of n processes. For each edge {u, v}, there is a shared register ruv
which only node v can read and to which only node u can write, and similarly there is
also a shared register rvu. At each computation step, each node can perform a single read
operation or a single write operation. In this model, the paper presents a distributed self-
stabilizing algorithm that solves maximal matching under fair distributed adversaries,
i.e., those that guarantees that every process that wants to take steps is eventually
scheduled. The algorithm stabilizes in O(m∆) steps, where m is the number of graph
edges and ∆ is the maximum degree. As an intermediate step, they also solve maximal
matching under unfair distributed adversaries but under the additional assumption that
each node u can also read ruv.

Brief Announcement: Message-Efficient Self-stabilizing Transformer Using Snap-
Stabilizing Quiescence Detection.
Anas Durand, Shay Kutten

A diffusing computation is an algorithm where a unique initiator spontaneously sends
a message exactly once (to one or more of its neighbours) and all other processes can
start sending messages (as often as they would like) after receiving at least one mes-
sage. Examples include performing a one-to-all broadcast, a BFS, a DFS, etc. Such a
computation reaches quiescence when no messages are in the communication links and
a local indicator of stability holds at every process. Examples of quiescence are termi-
nation and deadlock. The ability to detect quiescence can be very useful, e.g., to reset a
deadlock, to start another operation after termination, or as a building block in build-
ing a transformer that can convert non-self-stabilizing algorithms into self-stabilizing
ones. This paper proposes a self-stabilizing quiescence detection algorithm for diffusing
computations, and uses it to implement a message-efficient self-stabilizing transformer.

Brief Announcement: Constant-Space Self-Stabilizing Token Distribution in
Trees.
Yuichi Sudo, Ajoy K. Datta, Lawrence Larmore, Toshimitsu Masuzawa

Consider a rooted n-node tree, a given positive integer k, and a known node capacity
` ≥ k. The goal is to distribute tokens so that each node has exactly k tokens, starting
from any configuration in which some nodes might already have some tokens. The
number of tokens in the initial configuration might not be exactly nk, so the designated
root node is allowed to push out tokens or pull new tokens in from an external source.
The tokens are passed between nodes using link registers: for each edge {u, v}, there
is a register ruv that both u, v can read and to which only u can write, and similarly
there is a register rvu. The paper proposes three algorithms for this task, and evaluates
them by analyzing their time complexity, space complexity, and total number of token
moves.

Mobile Agents

Explorable Families of Graphs.
Andrzej Pelc

ACM SIGACT News 16 December 2018 Vol. 49, No. 4

An agent is located at a node v of a finite simple connected undirected graph G. It has
no a priori information about G. The nodes of G are not labeled, however the agent can
distinguish between the incident edges of a node as they are labeled with distinct port
numbers. In one step, the agent chooses a port to exit the node via an edge, it arrives
at the other endpoint of the edge, and learns the port number from which it entered.
The agent’s goal is to eventually visit all nodes of G using a deterministic algorithm.
It is known that this task is impossible in arbitrary graphs, so this paper studies which
graph families are explorable. More specifically, if the agent is promised that G is from
a given graph family F , is there an algorithm that will solve exploration? The paper
gives an exact characterization of which graph families F are explorable, and in the
positive case, constructs a deterministic exploration algorithm that works specifically
for F . The author also considers the possibility of a universal algorithm that takes an
arbitrary explorable family F as input and can explore every graph in F . The answer
depends on how F is provided: if there is an oracle that can answer every yes/no
question about F , then there is a universal algorithm for exploration. However, if only
given an enumerator that can provide any requested graph from F , there is no universal
algorithm.

Space-efficient Uniform Deployment of Mobile Agents in Asynchronous Uni-
directional Ring.
Masahiro Shibata, Hirotsugu Kakugawa, Toshimitsu Masuzawa

Consider k asynchronous mobile agents located at arbitrary nodes of an unlabeled n-
node unidirectional ring network. The value of k is known by the agents, and an agent
can only observe the node at which it is currently located. Agents cannot directly
communicate, but they each have a token that they can place at a node they are
visiting and cannot pick it up again. This paper considers the problem of uniform
deployment: at termination, the distance between every pair of two consecutive agents
is the same. They give memory-efficient algorithms for solving the problem under two
different assumptions: no multiplicity detection, which means that an agent cannot
detect when it is at the same node as another agent, and weak multiplicity detection,
which means that an agent knows if it is at a node containing at least one more agent,
but not the exact number of agents.

Priority Evacuation from a Disk Using Mobile Robots.
Ryan Killick, Jurek Czyzowicz, Konstantinos Georgiou, Evangelos Kranakis, Danny Krizanc,
Lata Narayanan, Jaroslav Opatrny, Sunil Shende

This paper introduces a priority evacuation problem where n + 1 agents (n servants
and one ‘queen’) are located on a disk and must find a hidden exit on the perimeter of
the disk through which the queen must escape. All agents initially start at the center
of the disk. The exit is found as soon as an agent occupies the exit’s position, and then
this agent instaneously broadcasts its coordinates to all others. The goal is to minimize
the time it takes for the queen to reach the exit (the other n agents are expendable
and can be sacrificed to whatever the queen is escaping from). For the case n ≥ 4, the
authors propose an algorithm that guarantees that the queen escapes in time less than
2 + 4(

√
2 − 1)πn , and they prove that the queen cannot be evacuated in time less than

ACM SIGACT News 17 December 2018 Vol. 49, No. 4

2 + π
n + 2

n2 (they conjecture that their upper bound is in fact optimal). Many in the
audience at the talk felt that the proposed search strategy was quite nice, especially
when presented beautifully as an animation in Ryan’s talk slides!

Gathering in the Plane of Location-Aware Robots in the Presence of Spies.
Ryan Killick, Jurek Czyzowicz, Evangelos Kranakis, Danny Krizanc, Oscar Morales Ponce

Consider a set of n > 2 mobile robots in the Cartesian plane, where at most F ≤ n−2 of
the robots are Byzantine and indistinguishable from the non-faulty robots. The robots
have GPS devices so that they accurately know their position at all times. There is
a central authority to which all robots can report their position. The goal is for the
central authority to send trajectory instructions to the robots so that all of the non-
faulty robots eventually meet at the same point. The Byzantine robots are trying to
delay this from happening, either by falsely reporting their location, failing to report,
or failing to follow given trajectory instructions. The performance of an algorithm is
measured by the competitive ratio of the algorithm’s gathering time versus the time
that could be achieved if the central authority knew which robots were Byzantine. The
authors provide efficient algorithms in the case where the central authority knows an
upper bound on the number of Byzantine robots. In the case of at most one faulty robot,
they give an optimal algorithm, and in the case where the proportion of Byzantine robots
is less than one half or one third, they give algorithms with small constant competitive
ratios. For an arbitrary number of faulty robots, they give algorithms whose competitive
ratio is bounded above by min{32

√
2, F + 2}.

Symmetric Rendezvous With Advice: How to Rendezvous in a Disk.
Konstantinos Georgiou, Jay Griffiths, Yuval Yakubov

In the Symmetric Rendezvous Problem in a Disk, two agents are initially located at
points in the plane, the initial distance d between them is known, and they both know
the location of the origin O. They both move at the same speed, can move in any
direction, and both run the same randomized and synchronized algorithm. They cannot
see each other, but can detect when they are located at the exact same point. The goal
is to design the algorithm as to minimize the expected time that elapses before they first
meet. The paper also considers the worst-case performance of algorithms, called energy,
which is defined as the amount of time that elapses such that rendezvous occurs with
probability 1. The main contribution is to show how known (sub-optimal) algorithms
for the model where O is not known by the agents can be improved by providing
knowledge of O. Additionally, they show that this additional knowledge of O can be
used to guarantee a finite upper bound on energy.

Brief Announcement: Distributed Counting along Lossy Paths without Feedback.
Vitalii Demianiuk, Sergey Gorinsky, Sergey Nikolenko, Kirill Kogan

In an asynchronous packet network, a set f of packets originating at a source switch
S is destined for a destination switch D. For accounting and management purposes,
it is important to be able to calculate |f |. This paper proposes a distributed counter
that maintains some bits at both S and D. This is motivated by the fact that, as
the number of parallel flows and as the network traffic rate increases, a single network

ACM SIGACT News 18 December 2018 Vol. 49, No. 4

switch does not have the memory or processing capacity to keep up. One complication
that the authors include in their model (and deal with in their solution) is the realistic
assumption that packets might be reordered or lost along the way from S to D.

Coordination

On the Strongest Message Adversary for Consensus in Directed Dynamic
Networks.
Ulrich Schmid, Manfred Schwarz

Consider a synchronous distributed directed message-passing system consisting of an
unknown number n of processes that never fail. A message adversary controls the
ability to communicate: in each round, the adversary chooses which communication
arcs are present in the system, and thus has the ability to “suppress” communication
from p to q in a given round by removing arc (p, q). A run of the system is an infinite
sequence of communication graphs G1, G2, . . . where Gi specifies the communication
edges available in round i. A message adversary is defined by which such graph sequences
it may generate. If given too much power, a message adversary can certainly prevent
consensus from happening (e.g., just make all graphs in the sequence empty), and
when very restricted (e.g., each element of the sequence must be the complete graph),
consensus is always possible. This paper characterizes strongest message adversaries
for consensus, which turn out to be those that include all possible infinite sequences of
identical star graphs.

A Characterization of t-Resilient Solvable Colorless Tasks in Anonymous
Shared-Memory Model.
Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, Nayuta Yanagisawa

This paper considers the asynchronous shared memory model where n anonymous pro-
cesses communicate through multi-writer/multi-reader registers. They provide a char-
acterization of which colorless tasks are solvable when at most t processes may crash:
a colorless task is t-resilient solvable anonymously if and only if it is t-resilient solvable
non-anonymously. To prove the result, they first design an anonymous non-blocking
implementation of an atomic weak set object with n registers, which they use to build
a wait-free implementation of a safe agreement object for an arbitrary set V of values.
Then, they describe two ways to prove the characterization: one way is through a new
anonymous implementation of the BG-simulation, and the other way is to solve k-set
agreement and then apply a topological argument.

Crash-tolerant Consensus in Directed Graph Revisited.
Ashish Choudhury, Gayathri Garimella, Arpita Patra, Divya Ravi, Pratik Sarkar

This paper considers distributed consensus in directed graphs in the synchronous message-
passing model where up to f nodes might crash at any time. Previous work [8] presented
necessary and sufficient conditions for the existence of consensus protocols in this model.
This paper modifies the min-max-based protocols from [8] in order to improve the round
and communication complexity. The authors also provide new lower bounds for the class
of min-max-based consensus protocols in this model.

ACM SIGACT News 19 December 2018 Vol. 49, No. 4

Balanced allocations and global clock in population protocols: An accurate
analysis.
Yves Mocquard, Bruno Sericola, Emmanuelle Anceaume

Consider a set of n bins, and consider the following random process: at each discrete
step, randomly choose two bins, and place a ball in the least filled bin of the two. This
is known as the two-choice paradigm for online load balancing, which has previously
been shown [2] to achieve a drastically more balanced load compared to simply placing
the ball in one randomly chosen bin. At any time t, let Gap(t) denote the difference
between the most loaded and least loaded of the n bins. This paper aims to derive
good asymptotic approximations of Gap(t) for large values of n. They show that, for all
t ≥ 0, n ≥ 2 and σ > 0, the value of Gap(t) is less than a(1+σ) ln(n)+b with probability
greater than 1 − 1/nσ where the constants a and b are optimized and given explicitly.
Their approach is to analyze a population protocol that implements the process: at
each time step, the two interacting agents represent the two chosen bins, and the agent
with the smaller local counter increments its local counter. An additional feature of this
protocol is that, by accurately estimating the maximal gap between any two counters,
other protocols can use this to implement a global clock.

On Knowledge and Communication Complexity in Distributed Systems.
Daniel Pfleger, Ulrich Schmid

This paper explores the possibility of proving bounds on the communication complexity
of a problem P by using the epistemic knowledge that must necessarily be attained by
the processes in order to solve P. Epistemic logic can be used to formally reason about
the knowledge and beliefs of the processes, and in particular is useful for defining which
states are indistinguishable from one another. In addition, Action Models can be used
to describe the possible communication events that may occur at certain times in an
algorithm’s execution. A synchronous algorithm can then be viewed as an alternating
sequence between “knowledge models” and “action models”, where the current knowl-
edge model defines the next action model which defines the next knowledge model,
and so on. An action model at time t can be partitioned from the point of view of a
particular process p: the possible actions that might occur at time t that are indistin-
guishable to process p belong to the same class in the partition. The authors argue that
there is a strong connection between the communication complexity (i.e., the number
of bits received by p) and the number of sets into which the action model is partitioned
with respect to process p’s point of view. Essentially, the number of bits p receives
is directly related to the number of different situations that process p can distinguish
between. The authors apply this idea to prove two (already known) lower bounds: one
for a distributed function computation in the 2-player communication model, and one
for consensus in directed dynamic networks controlled by a message adversary.

Brief Announcement: Make&Activate-Before-Break: Policy Preserving Seamless
Routes Replacement in SDN.
Yefim Dinitz, Shlomi Dolev, Daniel Khankin

This paper considers the problem of seamless route replacement in SDNs: a centralized
algorithm updates the routing rules at the network switches in order to change the set

ACM SIGACT News 20 December 2018 Vol. 49, No. 4

of routes, but must be done live in a seamless way, i.e., that doesn’t cause problems
for packets already in transit. Changing several routes at a time can get complicated,
as there can be various interdependencies between sub-routes. The first contribution of
this work proposes a solution to an extended version of the problem that additionally
requires that network policies are maintained while routes are being updated. There are
two cases based on whether or not policies are allowed to be migrated to different nodes
to make the route updates easier to perform. The second contribution proposed by this
paper is the implementation of a Route Readiness Verifier that can check when the
“update” commands sent by the central controller to the network switches are actually
executed. This would enable the implementation of the Make&Activate-Before-Break
approach to route replacements, e.g., wait until the new route is ready before using it.
This would close a significant restrictive gap in the OpenFlow standard.

Networks

Biased Clocks: A Novel Approach to Improve the Ability to Perform Predicate
Detection with O(1) Clocks.
Vidhya Tekken Valapil, Sandeep Kulkarni

This paper introduces a version of hybrid logical clocks that adds bias B to the times-
tamps of received messages. In particular, each sent message contains the sender’s local
timestamp for the send event, and when a process j calculates the timestamp of a re-
ceive event, it takes the maximum of {j’s physical clock value, 1+ j’s previous logical
clock value, and B+ the timestamp included in the received message}. Previous hybrid
logical clocks [7] had the same implementation but with B = 1. The effect of adding
bias is that it introduces more opportunities to detect global states consisting of concur-
rent events, since now two events are considered concurrent if their timestamp values
differ by less than B (instead of requiring equality). The authors conduct experiments
to show that taking B > 1 is more effective than the previous version of hybrid logical
clocks that sets B = 1.

Formalizing Compute-Aggregate Problems in Cloud Computing.
Pavel Chuprikov, Alex Davydow, Kirill Kogan, Sergey Nikolenko, Alexander Sirotkin

Consider an undirected connected network G such that each edge is labeled with the
cost of moving one unit of information across it. Each node of the network starts with
a certain number of units of data, and the goal is to aggregate the data and supply
the answer to a target node t. In a simple scenario where all aggregation must happen
at node t, the goal is to find the best paths along which to send the data to minimize
the total cost. However, more realistically, aggregation can occur at any node in the
network, so there is an additional function µ that, given two pieces of data, tells us
the size after aggregating the two pieces. This paper considers the Compute-Aggregate
Minimization (CAM) problem: given an undirected connected graph G, an edge-cost
function c, a target vertex t, a set of initial data chunks C with sizes and initial locations,
and an aggregation size function µ, find an aggregation plan such that the total cost of
moving data across edges is minimized. The paper also considers two special cases: when
G is a tree (TCAM) and when aggregation can only happen at nodes that were initially

ACM SIGACT News 21 December 2018 Vol. 49, No. 4

assigned chunks (CCAM). They give polynomial-time approximation algorithms for
general µ, although the approximation factor cannot be constant unless P = NP . They
also give approximation algorithms and hardness results for aggregations size functions
with restricted ranges, and also for specific examples of µ such as min, max, and +.

Broadcast with Energy-Exchanging Mobile Agents Distributed on a Tree.
Jurek Czyzowicz, Krzysztof Diks, Jean Moussi, Wojciech Rytter

Consider an rooted edge-weighted tree with mobile agents arbitrarily deployed at some
of the nodes. Each agent possesses some initial amount of energy. The agents can
move through the tree from node to node, however each move incurs a cost that gets
deducted from their energy tank. When two nodes meet at a node, they may transfer
any amount of energy that they currently possess. The problem considered in this
paper assumes that a token is initially located at the root of the tree, and this token
can be carried by any agent and exchanged between agents. The goal is to determine
whether or not there is a schedule of agent movements and energy transfers such that
the token eventually visits every node of the network. The authors solve the problem
by providing a full-knowledge centralized algorithm that controls the movements of the
agents. Their approach also solves a more general optimization problem: if the agents
can permanently deposit unused energy at the root, determine the maximum amount
that can be deposited while ensuring that the token visits all nodes.

Brief Announcement: Fast Approximate Counting and Leader Election in
Populations.
Othon Michail, Paul Spirakis, Michail Theofilatos

Consider a population of n distributed and anonymous agents. In every discrete time
step, a uniform random scheduler chooses two agents that will “interact”, which means
that a transition function is applied to their current pair of states to determine their
new states. The time complexity of solving a task is the number of interactions until
stabilization divided by n (called parallel time). This paper solves two problems: they
provide an algorithm that, w.h.p., computes an upper bound on n that is at most na

for some constant a > 1, assuming that a unique leader is already chosen; also, they
provide an algorithm that solves leader election w.h.p. assuming that the nodes know an
upper bound nb, b > 1 on n. The first algorithm stabilizes in Θ(log n) parallel time and
all nodes except the leader use a constant number of states (the leader uses Θ(log2 n)
states). The second algorithm has a smooth time-space tradeoff: on one end is O(log2 n)
parallel time and O(log n) states, and on the other end is O(log n) parallel time and
O(n) states.

Brief Announcement: One-Max Constant-Probability Networks: Results and
Future Work.
Mark Korenblit

This paper summarizes new tree-like models for randomized network growth/generation
that extend from the well-known Barabási-Albert random graph model for scale-free
networks. In the one-max constrant-probability models, a newly-added vertex can be
connected to at most one old vertex, any connection event is realized with the same

ACM SIGACT News 22 December 2018 Vol. 49, No. 4

probability p, and the probability that it will be connected to a particular vertex i
depends on the rank of i’s degree in relation to all other vertex degrees. This models
real-life choices that depend on relative status rather than an absolute characteristic.
The constant-probability ordered model keeps the vertices sorted in decreasing order
of their degrees, although leads to many isolated vertices. This is addressed in the
constant-probability ordered non-0 model which prioritizes connections to isolated ver-
tices over newly-added vertices of degree 1. The paper suggests several directions for
future research about network topology evolution based on extensions of these tree-like
models.

Brief Announcement: Reaching Distributed Equilibrium with Limited ID Space.
Dor Bank, Moshe Sulamy, Eyal Waserman

Consider the synchronous message-passing model with n agents such that the network
topology is 2-vertex-connected. The agents are running an algorithm A, and each agent
has a utility function defined over all possible algorithm inputs. All utility functions
satisfy the property that an agent never prefers an outcome in which the algorithm fails
over one in which it terminates correctly (this distinguishes the model from ones that
include Byzantine faults). An algorithm is in equilibrium if no agent can unilaterally
increase its utility by deviating from the algorithm. The value of n is not known by
the agents, which means that an agent may try to increase its utility by duplicating
itself (i.e., simulating imaginary agents and acting on their behalf). However, there is
a known restricted range of agent ID’s {1, . . . , L}, so there is a risk that a duplicate
agent ID is discovered and the algorithm fails. So, if the agents are initially given a
large enough lower bound t such that t ≤ n ≤ L, their incentive to cheat will go down
and the algorithm will be in equilibrium. This paper provides a method for calculating
the minimal such value t and they apply the method to Leader Election and Knowledge
Sharing algorithms.

Excursion to the Old City

We had three scheduled events on our excursion to the Old City. The first was a guided tour of
the city and the tunnels under the Western Wall. Along with the standard stops at places like the
Church of the Holy Sepulchre, we were led up a staircase to a rooftop that gave a beautiful view
of the Temple Mount, the Mount of Olives, and the rest of the Old City vista. We then visited the
Western Wall. The tunnels under the wall were interesting, but not interesting enough to see twice,
which we did anyway because we needed to retrace our steps all the way back to the entrance (the
exit at the end was blocked). This delayed our arrival at the second scheduled stop: dinner.

ACM SIGACT News 23 December 2018 Vol. 49, No. 4

Eucalyptus Restaurant is located just outside of the walls of the Old City. We were treated to
many small courses of traditional fare, including some perennial favourites of mine: lamb siniya,
anything with eggplant, and makloubeh, which consists of rice, vegetables and meat prepared in
a large pot and flipped over quickly and courageously before serving. The conference awards were
presented after dinner, but the earlier delay meant that we needed to rush out to get to our third
stop: the multimedia Tower of David Night Spectacular that would have no issue starting without
us.

Thankfully we made it with time to spare, I suspect because whoever designed our schedule
anticipated that we would be delayed. It was a beautiful show: the story of Jerusalem starting
from biblical times, but purely through music and projected animations on the old walls of the
Citadel’s courtyard. But after a half-day of talks and a 7+ hour excursion, all of us were definitely
ready to call it a night.

And on that fitting note, I’ll conclude my report on SIROCCO 2018. I hope to see you at next
year’s conference in L’Aquila!

References

[1] N. Alon and J. H. Spencer. The probabilistic method. John Wiley & Sons, fourth edition,
2016.

[2] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations (extended abstract).
In Proceedings of the ACM Symposium on Theory of Computing (STOC), 1994.

[3] Reuven Bar-Yehuda, Keren Censor-Hillel, and Gregory Schwartzman. A distributed (2 + ε)-
approximation for vertex cover in o(log ∆/ε log log ∆) rounds. J. ACM, 64(3):23:123:11, 2017.

ACM SIGACT News 24 December 2018 Vol. 49, No. 4

[4] R. B. Boppana. Personal communication to Joel Spencer, 1987.

[5] Yun Kuen Cheung, Bhaskar Chaudhuri, Jugal Garg, Naveen Garg, Martin Hoefer, Kurt
Mehlhorn. On Fair Division of Indivisible Items. CoRR abs/1805.06232, 2018.

[6] Paul Erdős and Tibor Gallai. Graphs with prescribed degrees of vertices [hungarian]. Matem-
atikai Lapok, 11:264274, 1960.

[7] Sandeep S Kulkarni, Murat Demirbas, Deepak Madappa, Bharadwaj Avva, and Marcelo Leone.
Logical physical clocks. In International Conference on Principles of Distributed Systems, pages
1732. Springer, 2014.

[8] L. Tseng and N. H. Vaidya. Fault-Tolerant Consensus in Directed Graphs. In PODC, pages
451460. ACM, 2015.

ACM SIGACT News 25 December 2018 Vol. 49, No. 4

PODC 2018 Review

Naama Ben-David
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA, USA
nbendavi@cs.cmu.edu

The 2018 ACM Symposium on the Principles of Distributed Computing (PODC 2018) was held
on July 23-27, at Royal Holloway, University of London, in Egham, UK (see Figure 1). This venue
achieved a nice balance between two opposing desirable features of a conference location: being
remote enough to encourage conference participants to attend most of the talks, and being central
enough to allow for enjoyable tourism. Royal Holloway is only a 15 minute drive from Windsor
Castle (see Figure 2), and about an hour away from central London. This allowed conference
attendees to enjoy London before and after the conference, but also created a lively atmosphere in
the lecture hall and during breaks, as most conference attendees remained in the area.

Figure 1: Royal Holloway, University of London
Figure 2: Windsor Castle

This year, PODC received 163 regular submissions, and 13 brief announcement submissions. Of
these, 41 were accepted as full papers, and 18 were accepted as brief announcements. There were 144
attendees, with an additional 67 people who only attended the workshops. Keynote talks were given

ACM SIGACT News 26 December 2018 Vol. 49, No. 4

by Rob Peglar, Graham Cormode, and Keren Censor-Hillel. The technical content covered a wide
range of topics, including shared memory algorithms, distributed graph algorithms, blockchains,
persistent memory, and population protocols. Unfortunately, I cannot cover all presented papers
in this review. Instead, I give an overview of the topics and events of each day, and discuss some
talks in more detail.

PODC began with the Jennifer Jubilee– a celebration of Jennifer Welch’s 60th birthday. Nancy
Lynch, Nitin Vaidya, Shlomi Dolev, and Hagit Attiya gave talks remembering Jennifer throughout
her career, and explaining her many contributions to our field. Happy Birthday, Jennifer!

Day 1

The first session of the conference featured papers about persistent memories. Upcoming memory
technology will provide persistent, non-volatile main memory, meaning that upon a power failure,
data in the cache will be lost, but data in main memory will remain unharmed. This introduces
a lot of potential in designing applications that are resistent to system crashes. The first talk of
the conference, a keynote talk given by Rob Peglar, addressed these new technologies. He gave an
overview of persistent memory trends in the past, and explained why he believes that non-volatile
memories (NVM) will be very important in the near future.

We then heard about recent research on this topic. Ohad Ben-Baruch presented his paper on
Nesting-Safe Recoverable Linearizability, or NRL. In summary, this is a new correctness criterion
for objects designed to enable recovery in NVM systems, where execution histories include crash
events, upon which all data in the cache is lost. NRL ensures that an operation’s return value
is stored in a persistent manner, so that the execution can be recovered and continued after a
crash. In the same session, Adam Alon described a deterministic algorithm for abortable mutual
exclusion that has only sublogarithmic remote memory reference (RMR) complexity. Abortable
mutual exclusion allows processes to abandon their attempt to grab a lock. A common approach
to mutual exclusion that ensures starvation freedom is to have a queue of processes waiting for the
lock, and simply pass the lock to the next process in line. However, simply abandoning an attempt
can cause problems when determining which process should grab the lock next, as there can be
many ‘holes’ in the queue. Adam presented a solution to this problem that involves constructing a
tree on top of the queue to facilitate locating the next process in line.

The next session was about the theory of shared memory. I presented a paper entitled Passing
Messages while Sharing Memory. The paper introduces the Message-and-Memory model – an
asynchronous computational model in which processes can both pass messages and share memory,
and may fail by crashing. In the paper, we show that this model allows solving consensus while
tolerating more failures than in a message passing system, and that leader election can be solved
with less synchrony requirements. David Yu Cheng Chan presented a paper about the classification
of objects according to their set-agreement power. A classic result by Herlihy classifies objects
according to their ability to solve consensus. However, the heirarchy produced is not precise, since
some objects are placed at the same level of the heirarchy even though they cannot implement each
other in all settings. David showed that, while set-agreement is a more refined way of classifying
objects, it still cannot perfectly separate objects of different power.

The later sessions of the first day were about wireless networks and graph algorithms. Yi-
Jun Chang presented a paper entitled The Energy Complexity of Broadcast. In the broadcast
problem, one source node wants to send a message to all other nodes in a distributed graph. It

ACM SIGACT News 27 December 2018 Vol. 49, No. 4

takes ‘energy’ when a node has to either send a message in a round, or listen to see if it receives
incoming messages. We want to minimze the energy cost, while keeping the number of rounds low.
Yi-Jun showed how to broadcast with O(log n) energy. Ellis Hershkowitz presented a paper about
round- and message- optimal distributed algorithms. Round complexity and message complexity
are both common measures for evaluating a distributed graph algorithm. However, usually, an
algorithm is optimized for one of the measures, and does not achieve optimality in the other
measure. Furthermore, in some cases, the two goals seem at odds. In his talk, Ellis showed how to
design algorithms that are optimal in both round and message complexity in the congest model.
The techniques in this paper apply to many distributed graph problems, like MST, min cut, and
single-source shortest paths.

The first day ended with the business meeting. Jennifer Welch was unanimously chosen as
steering committee chair. There were lengthy discussions about two possible changes to future
PODCs: parallel tracks, and double-blind reviewing. The motivation for parallel tracks is that in
this way, we can grow PODC’s size, number of accepted papers, and length of talks. Furthermore,
there already seems to be a split in the community, roughly along the lines of synchronous vs
asynchronous computation. It already feels like the program committee is effectively split, and
people skip or attend sessions according to this divide in topics. However, people opposing to this
suggestion felt that creating parallel tracks and thereby solidifying the divide would have a negative
effect on our community, and could possibly weaken PODC’s reputation. For now, the decision is
not to pursue parallel tracks.

Double-blinding the review process came up because some people worry that single-blind re-
viewing benefits established members of the community, while making it harder for new people to
join. However, some people were concerned that when submitting a paper for double-blind review,
promoting the paper or putting it on ArXiv would be discouraged. Other people also felt that the
identity of the author can be important when reviewing a paper, since verifying correctness is so
hard to do.

Next year’s PODC will be held in Toronto. Faith Ellen will be the program committee chair.

Day 2

The second day was opened with a keynote talk by Graham Cormode about Data Summarization
and Distributed Computation. He showed that sketching and summarization can be useful for
distributed computing tasks. The idea is that we want to capture the essence of data in as little
space as possible, to allow for quick communication. Graham talked about how to continuously
monitor data that is distributed across a network to compute a function of this data at a single
coordinator. He gave examples inspired by machine learning.

The regular program then began with a talk by Nikola Konstantinov, who presented his paper
about the convergence of stochastic gradient descent in asynchronous shared memory. The idea in
shared memory stochastic gradient descent (SGD) is to give a mini-batch of data to each process,
have each process calculate a new gradient from their data, and use fetch&add to update the
global direction with their gradient. In practice, this works relatively well. However, in theory,
it seems like the adversary might be able to prevent convergence by deciding who goes first, and
arbitrarily delaying some process’s updates. The paper shows that under some assumptions, the
failure probability can be bounded. Ultimately, the adversary can slow down the computation, but
not prevent convergence.

ACM SIGACT News 28 December 2018 Vol. 49, No. 4

The next session focused on routing and leader election. Vijaya Ramachandran showed how
to compute distributed exact weighted all pairs shortest path (APSP) in a deterministic manner
in Õ(n3/2) rounds. This problem has received a lot of attention recently, and this is the first
deterministic algorithm to beat O(n2). The idea is based on the concept of an h-hop shortest
path: a weighted shortest path that uses at most h edges. An h-hop single-source shortest path is
computed from each vertex, and then a designated set of nodes, called a blocker set, is used to find
shortcuts to improve the distances calculated.

Assaf Yifrach then talked about fair leader election for rational agents in rings and networks.
The goal is to elect a leader in a network, despite possible preferences of each node. The difficulty
is that nodes might prefer themselves to be the leader, or some other specific node, and could try
to bias the decision in their favor. To overcome this, the agents each randomly pick a leader `i
(with id from 1 to n), and send this to everyone. The final leader elected will be the process with
id equal to

∑
i `i mod n. To prevent agents from using asynchrony to their advantage, messages

are buffered.
After lunch, there was a session about blockchains and security. Maurice Herlihy talked about

Atomic Cross-Chain Swaps. The problem is to design a protocol that allows parties that do not
trust each other to swap resources. We can think of a directed graph of trades. If this graph
is strongly connected, then there is an atomic cross-chain swap protocol for the graph. Vertices
generate a secret key, and hash it to use as a lock.

In the last session of the day, Guy Goren presented his best student paper, entitled Silence. (See
Figure 5.) The idea in this paper is that in synchronous networks, not sending a message in some
round can convey information. This can be used to improve message complexity of algorithms.
If processes may crash, silence conveys a little less information, since we don’t know whether a
process purposefully didn’t send anything, or they actually crashed. However, even this little bit
of information can still be useful. Guy showed how to use this insight for atomic commit: everyone
has to commit or abort, and must commit only if all inputs were 1. To achieve message optimal
atomic commit, silence must be used. The paper presents an atomic commit algorithm that is
message optimal and time optimal, using only 3 rounds in the common case.

The second day ended with the PODC banquet. At the banquet, the Dijkstra Award was
presented to Bowen Alpern and Fred B. Schneider for their paper, Defining Liveness. See Figures
3 and 4. This paper formally defined the concepts of safety and liveness, creating a foundation for
many papers in the PODC community. Congratulations to Bowen and Fred!

Day 3

The final day of PODC started with a keynote talk by Keren Censor-Hillel. She talked about
the CONGEST model, and barriers that arise from congestion in such networks. Interestingly,
many problems in the CONGEST model require many rounds to compute exactly, but settling
for approximate solutions can greatly speed things up. For example, computing the diameter of
a graph requires Ω(n/B) rounds, where B is the capacity of each edge in a round, but to get a
2-approximation, we only need O(D) where D is the diameter. We can pay a little bit more and do
slightly better – to get a 3/2-approximation, we need O(D+

√
n). However, if we want to do better

than that, there is suddenly a jump in price; a (3/2−ε)-approximation requires Ω(n/(B ·poly log n)).
So, we see that there is a sharp threshold for trading off efficiency and accuracy. This phenomenon
repeats in other problems, like minimum vertex cover and subgraph detection.

ACM SIGACT News 29 December 2018 Vol. 49, No. 4

Figure 3: Bowen Alpern and Ulrich Schmid Figure 4: Ulrich Schmid and Fred Schneider

The rest of the morning session also focused on the CONGEST model. François le Gall talked
about a variant of this model – the quantum CONGEST model. He showed that certain problems,
including diameter and eccentricity, can get speedup in the quantum model over the classic one.
He presented an algorithm that calculates the eccentricities of vertices in O(

√
nD) rounds in the

quantum CONGEST model, where D is the diameter of the graph. In the classic model, there is
a known linear lower bound for this problem.

The second session of the day dealt with concurrency. Dan Alistarh talked about relaxed
priority schedulers, and how to use them to parallelize sequential tasks. Relaxed priority queues
are concurrent data structures that experience redued contention when compared to their classic
counterparts, but may return a value that is off from the minimum when a deleteMin operation
is executed on them. This paper focuses on the use of relaxed priority queues as a substitute for
classic priority queues as primitives in other algorithms. Dan showed that if the task for which
they are used has uniformly random priorities, the benefit of faster accesses to the queue can more
than make up for the extra work necessary to correct possible mistakes that the queue makes.
An example was shown on calculating MIS. In the same session, the co-best student paper, An
Asynchronous Computability Theorem for Fair Adversaries, was presented by Thibault Rieutord.
(See Figure 5.) He gave a topological characterization of fair adversaries, which include commonly
studied classes like wait-freedom and t-resilience. This paper thus generalized previously known
characterizations of task computability.

After lunch, the best paper was presented by Uri Goldenberg. (See Figure 6.) This paper shows
how to achieve ∆ + 1 coloring using a locally iterative algorithm; we start with a bad, but feasible,
coloring, and iteratively improve it. Uri presented their algorithm, and showed that it can achieve
a ∆ + 1 coloring in only O(∆ + log∗ n) rounds. These ideas also apply to other distributed graph
problems.

The final session of the conference was about graph and population protocols. Goran Zuzic
showed that minor-excluded network families admit fast distributed algorithms. This paper focuses

ACM SIGACT News 30 December 2018 Vol. 49, No. 4

Figure 5: Idit Keidar with best student pa-
pers award winners Thibault Rieutord, Yuan
He, and Guy Goren.

Figure 6: Idit Keidar with best paper award
winners Michael Elkin and Uri Goldenberg.

on two problems in the CONGEST model: MST and min cut. The main result is that on a family of
minor-free graphs, these two problems can be solved in O(D2) rounds, whereas on general graphs,
a lower bound of Ω̃(

√
n) is known.

Concluding Remarks

This year, as always, PODC included many exciting results, interesting conversations, and great
company. There was a feeling that interest in distributed computing is growing, both from the
theoretical community, and from the practical side. The days before and after PODC were filled
with workshops and tutorials, ranging in topics from blockchains, to biologically-inspired distributed
algorithms, to distributed machine learning, and bridging the gap between theory and practice in
the field. All this serves to further highlight new directions in which the community is progressing,
and I looking forward to hearing more developments next year in Toronto.

ACM SIGACT News 31 December 2018 Vol. 49, No. 4

DISC 2018 Review

Aditya Biradavolu
Department of Computer Science and Engineering

Texas A&M University
College Station, TX, USA
aditya95913@tamu.edu

Saptaparni Kumar
Department of Computer Science and Engineering

Texas A&M University
College Station, TX, USA
saptaparni@tamu.edu

The 32nd International Symposium on Distributed Computing, DISC 2018 was held in New
Orleans, USA, from October 15-19, 2018. The conference took place at the Hampton Inn & Suites
New Orleans-Convention Center and was organized by Costas Busch of Louisiana State University.
The conference included two workshops and three days of main conference this year.

1 Day 1

The 7th workshop on Advances in Distributed Graph Algorithms (ADGA) was held on Monday,
October 15. There were six talks at this year’s ADGA workshop. The first talk The Unreasonable
Effectiveness of Decay-Based Broadcasting in Radio Networks was by Calvin Newport. Calvin gave
a nice glimpse into the backstory and impact of the surprisingly simple randomized distributed
algorithm BGI [1] for broadcasting a single message to all processes on a multihop shared channel
in radio networks. This solution solved the problem faster (with high probability) than the best
known centralized scheduling algorithm at the time and was later proved to be optimal among
all possible distributed algorithms. Calvin goes on to describe their recent efforts to explore the
behavior of this basic “decay” strategy in more realistic models which proves that the BGI algorithm
retains strong guarantees even in very noisy and unpredictable radio networks. The next four talks
were on varied topics ranging from graph sketching and streaming to optimality of single source
shortest paths and spanning tree algorithms. The speakers were Andrew McGregor, Valerie King,
Seth Pettie and Sebastian Forster.

The last talk in this workshop Recent Advances in Population Protocols was by Rati Gelashvili.
Rati spoke about the computability and complexity characteristics of recent developments in pop-
ulation protocols. From a theoretical perspective, a population protocol is probably the simplest
distributed model and yet, perhaps surprisingly, solutions to classical distributed tasks are still
possible. Moreover, these solutions often rely on neat algorithmic ideas for design and interesting

ACM SIGACT News 32 December 2018 Vol. 49, No. 4

combinatorial techniques for analysis. Rati also discussed some open problems and directions in
this area.

2 Day 2

The first day of the conference started with a keynote talk by Tom Goldstein titled Challenges for
Machine Learning on Distributed Platforms. Tom explained the problems and challenges that arise
when scaling deep neural nets over large systems, highlighting reasons why naive distributed training
methods fail. He then discussed recent algorithmic innovations that have overcome these limitations,
including big batch training for tightly coupled clusters, and variance reduction strategies to reduce
communication in high latency settings.

The first session of the day was on distributed storage and was chaired by Ulrich Schmid. The
first talk was on Multi-Shot Distributed Transaction Commit [2] by Gregory Chockler and Alexei
Gotsman and this paper was awarded the Co-Best Paper award. Alexei motivated the paper by
highlighting how the atomic-commit problem is too restrictive to capture the complexities of mod-
ern transactional data stores, where commit protocols are integrated with concurrency control, and
their executions for different transactions are interdependent. As an alterntive, they introduce the
Transaction Certification Service (TCS), a new formal problem that captures safety guarantees
of multi-shot transaction commit protocols with integrated concurrency control. TCS is param-
eterized by a certification function that can be instantiated to support common isolation levels,
such as serializability and snapshot isolation. Alexei also described a crash-resilient protocol for
implementing TCS which achieves a better time complexity than mainstream approaches that layer
two-phase commit on top of Paxos-style replication.

The next paper in this session was Integrated Bounds for Disintegrated Storage [3] by Alon
Berger, Idit Keidar and Alexander Spiegelman. Alon pointed out a somewhat surprising similarity
between non-authenticated Byzantine storage, coded storage, and certain emulations of shared
registers from smaller ones. A common characteristic in all of these is the inability of reads to
safely return a value obtained in a single atomic access to shared storage. The authors show
that if readers are invisible, then the storage cost of such systems is inherently exponential in the
size of written values; otherwise, it is at least linear in the number of readers. Their bounds are
asymptotically tight to known algorithms, and thus justify their high costs. There were two more
full talks and two brief announcements in this session.

The second session was on shared memory systems and it was chaired by Idit Keidar. The first
paper of this session was Allocate-On-Use Space Complexity of Shared-Memory Algorithms [4] by
James Aspnes, Bernhard Haeupler, Alexander Tong and Philipp Woelfel. James spoke about the
consequences of adopting a per-execution approach to space complexity, where an object only counts
toward the space complexity of an execution if it is used in that execution as opposed to worst case
complexity. This helped show that many known randomized algorithms for fundamental problems
in shared-memory systems have expected space complexity much lower than the worst-case lower
bounds. It was also shown that many algorithms that are adaptive in time complexity can also be
made adaptive in space complexity. James demonstrated this with the problem of mutual exclusion
where the algorithm illustrates an apparent trade-off between low expected space complexity and
low expected RMR complexity. There were two more papers and a brief announcement in this
session.

The last two sessions for the day were on graph algorithms, chaired by Calvin Newport and

ACM SIGACT News 33 December 2018 Vol. 49, No. 4

Nicola Santoro respectively. The third talk in the third session was Redundancy in Distributed
Proofs [5] by Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz and Mor Perry. Dis-
tributed proofs are mechanisms enabling the nodes of a network to collectively and efficiently
check the correctness of Boolean predicates on the structure of the network or on data structures
distributed over the nodes. The authors consider well known mechanisms consisting of two compo-
nents: a prover that assigns a certificate to each node, and a distributed algorithm called verifier
that is in charge of verifying the distributed proof formed by the collection of all certificates. The
authors show that many network predicates have distributed proofs offering a high level of redun-
dancy, explicitly or implicitly. They use this property of distributed proofs to establish perfect
tradeoffs between the size of the certificate stored at every node, and the number of rounds of the
verification protocol. There were two more full papers and two brief announcements in the third
session of the day.

The last session of the day had four papers. The third talk in this session was on Distributed
MST and Broadcast with Fewer Messages, and Faster Gossiping [6] by Mohsen Ghaffari and Fabian
Kuhn. Fabian spoke about their distributed minimum spanning tree algorithm with near-optimal
round complexity of Õ(D +

√
n) and message complexity Õ(min{n3/2,m}). Their’s is the first

algorithm with sub-linear message complexity and near-optimal round complexity and it improves
over other recent algorithms, which have the same round complexity but message complexity Õ(m).
This method also gives the first broadcast algorithm with o(n) time complexity when D = o(n) with
o(m) messages. In addition to this Fabian explained how their method leads to an Õ

√
nD)-round

GOSSIP algorithm with bounded-size messages which is the first such algorithm with a sublinear
round complexity.

3 Day 3

The first session of this day was chaired by Yoram Moses, and it kicked off with a keynote talk
by Sandor P. Fekete titled Autonomous Vehicles: From Individual Navigation to Challenges of
Distributed Swarms. He talked about how even though many technological advances are being
made in autonomous vehicles, there are still many challenges to be dealt with in some complex
scenarios. He talked about self-organized structures in general, and their emergent behavior, i.e.,
actions of small individual agents in the system leading to a global phenomenon (for example,
hurricanes or traffic jams). He then talked about the challenges in dealing with these self-organized
structures particularly from the point of view of individual autonomous vehicles. He proposed some
interesting game theoretic mechanisms to model these large scale issues, and reach the equilibrium
between selfishness vs. cooperation. There were two other presentations in this session in the area
of multi-agent systems.

The next session was chaired by Jennifer Welch, and it started with a presentation by Va-
lerie King of the paper titled Broadcast and Minimum Spanning Tree with o(m) Messages in the
Asynchronous CONGEST Model [7]. This paper was selected as a co-best paper. The authors
consider the problem of finding a minimum spanning tree in a distributed network with efficient
message communication. This problem was motivated by mentioning about how researchers have
been working on it for decades, and that the best message complexity until this paper was only
Ω(n) in the asynchronous KT1 CONGEST model. Their paper was the first in this model to give
an algorithm which uses o(m) bits of communication to find a spanning tree. The algorithm is
randomized and builds the minimum spanning tree with high probability. The authors use an

ACM SIGACT News 34 December 2018 Vol. 49, No. 4

interesting technique for building a spanning tree in phases, by using a pre-selected leader as the
root to grow a tree. There were two other full presentations in this session in the area of wireless
networks, followed by three brief announcements before the lunch break.

The third session was chaired by Gokarna Sharma, and all the four presentations in the session
were on leader election. It started off with a presentation by Fabien Dufoulon on Beeping a Deter-
ministic Time-Optimal Leader Election [8]. Then Shaked Rafaeli presented a paper on The Role
of A-priori Information in Networks of Rational Agents [9]. The authors consider game-theoretic
distributed computing, where all the agents in the network are rational, i.e., they may deviate from
the algorithm only if they deem it as profitable. They assume the synchronous model and the worst
possible utility function i.e., agents cheat even if slightly profitable. Shaked mentioned that in this
setting, it is traditionally assumed that each rational agent know the total number of agents in the
system, n. This assumption is unrealistic, particularly when large-scale distributed systems like
blockchains, social networks, etc., are considered. The authors consider a few standard distributed
problems and aim to know how the knowledge of n affects the equilibria of those distributed algo-
rithms and proceed to show that it is in fact impossible to achieve equilibrium when all rational
agents are considered, without prior knowledge of n. They show this using a Sybil attack, i.e.,
agents duplicating themselves to increase their utility.

The final session of the day was chaired by Robert Gmyr, and the presentations were on ran-
domized network algorithms. One of these was on A Population Protocol for Exact Majority with
O(log5/3 n) Stabilization Time and Θ(log n) States [10], presented by Robert Elsässer. He first
talked about population protocols in general, wherein each node of the graph has an initial state
and all nodes communicate and update their states pairwise according to a deterministic transition
function. The goal is to minimize the number of states needed per node as well as the stabilization
time. He then presented a fast population protocol for the exact majority problem with O(log5/3 n)
parallel stabilization time in high probability and Θ(log n) states.

After a day with intense talks, everyone at the conference was looking forward to the banquet.
The co-best paper awards were awarded to Gregory Chockler, Alexey Gotsman, Ali Mashreghi
and Valerie King. The Doctoral Dissertation Award was awarded to Dr. Rati Gelashvili for his
PhD. dissertation titled On the Complexity of Synchronization, supervised by Professor Nir Shavit
at the Massachusetts Institute of Technology. A delicious meal was served at the banquet, which
was enriched by a room full of ideas and discussions. To top that off, Costas had arranged for
everyone at the conference to go on a “Ghost Tour” on foot at the “haunted” French Quarter of
New Orleans. (See Figures 1 and 2.) It was a very unique experience for both the tour guides and
the scientists on foot. Our tour guide was very impressed when Moti asked her about the technical
difference between a spirit and a ghoul. We learned a lot about the history of New Orleans and
that there is not much “French” left in the French Quarter and that most of the architecture was
Spanish. Even though we were not really fortunate enough to experience anything paranormal, it
was overall an extremely entertaining experience.

4 Day 4

The first session of this day was chaired by Costas Busch, and it started off with a keynote talk
by Michael Mendler titled Logical Analysis of Distributed Systems: The Importance of Being Con-
structive. He talked about how in distributed systems, the abstraction of synchronization is in
a way paradoxical and that achieving global consistency from local communications is impossible

ACM SIGACT News 35 December 2018 Vol. 49, No. 4

Figure 1: Back of St. Louis Cathedral Figure 2: French Quarter scene.

without synchronization. In this point of view, distributed algorithms only reduce one synchro-
nization problem to another. To justify the logic of this abstraction, he studied this at the circuit
level. He further talked about the concepts of constructive logic, intuitionistic semantics, modality
of propagation delay and inertiality. This talk was followed by three other full presentations in the
area of distributed agreement, and one brief announcement.

After the lunch break, the second session was chaired by Gregory Chockler, and it had four
presentations, again in the area of distributed agreement. One of the presentations was by Calvin
Newport, on Fault-Tolerant Consensus with an Abstract MAC Layer [11]. Calvin started by men-
tioning about the abstract MAC layer model. Most models of distributed systems just abstract
the physical layer of networks, whereas this model abstracts the MAC layer as well. He then
talked about the advantages of using this model and the difference between Abstract MAC and
the asynchronous model. The authors looked at the binary consensus problem; the motivation
for considering consensus in wireless settings is for data-center type scenarios. Calvin mentioned
previous work on deterministic consensus in this model, which was shown to be impossible just
like in the asynchronous model. In this paper, they gave two randomized algorithms for consensus
in this model which work with any number of failures, require no knowledge of network size and
terminate with high probability. This on the other hand is not possible in asynchronous model
even if no faults are assumed.

The final two sessions were chaired by Peter Robinson and Robert Elsässer respectively, and
the presentations were on the CONGEST Model. The third session started off with a presentation
by Christian Konrad about the problem of detecting cliques in the classic distributed CONGEST
network model, with limited bandwidth on the communication links [12]. The authors gave tight
lower bounds for communication rounds to detect Kl cliques for l ≥ 4, in the two party commu-
nication framework, using a reduction to the set disjointness problem. This was followed by a
presentation by Merav Parter on Congested Clique Algorithms for Graph Spanners [13]. Merav
briefly talked about the advantages of using the congested clique model in global problems, and its

ACM SIGACT News 36 December 2018 Vol. 49, No. 4

difference when compared to CONGEST and LOCAL models. The authors studied graph spanner
constructions on the congested clique model for an n-vertex graph and gave the following three re-
sults. Randomized and deterministic constructions of a (2k − 1)-spanner with Õ

(
n1+1/k

)
edges in

improved number of rounds than previous algorithms was presented. This improvement is achieved
by a new derandomization theorem for hitting sets. They also showed a deterministic construction
of a O(k) spanner with O

(
kn1+1/k

)
edges in O(log k) rounds. This was achieved by using a tech-

nique based on dividing the graph into sparse and dense edges and constructing spanners for each
of these separately. There were five other presentations following this on CONGEST model before
the end of the final day of the conference.

5 Day 5

The 2nd Workshop on Storage, Control, Networking in Dynamic Systems (SCNDS) was conducted
on Friday, October 19. It had four invited talks, one tutorial and a few paper presentations. It
started off with a keynote by Antonio Fernandez Anta titled Putting Distributed Ledgers Together.
He started by motivating the need for a blockchain formalization and the possible use of distributed
computing knowledge to achieve this, and quoted Herlihy’s Keynote at PODC ’17, regarding the
same. Antonio and coauthors contributed to this formalization by defining a concurrent object
called a Distributed Ledger Object (DLO) as a building block of blockchains, which stores a totally
ordered sequence of records. It supports Append(r) and Get() operations. He mentioned about
the inevitability of interconnection of blockchains, and the problems that arise as a result of it.
He talked about atomic swap, atomic appends problem and about the competitive utility model,
and gave a possible solution to the appends problem by using a Smart DLO. He also explained the
scope of the future work, wherein the power of using Smart DLOs can be explored, and how the
atomic appends problem can be studied under different utility models.

This was followed by a talk given by Nitin H. Vaidya, titled Distributed Fault-Tolerant Optimiza-
tion In this talked Nitin talked about security and privacy for distributed optimization and learning.
He first described the following simple convex optimization problem: argminh(x) = 1

n

∑n
i=1 hi(x).

This problem can have various different applications, for example each hi(x) can be the cost of a
robot i to go to a location x, and the total cost of rendezvous has to be minimized. This could also
relate to learning in that the data is distributed across different agents during training. He consid-
ered the case where agents are faulty or adversarial. In this case the original problem wouldnt be
meaningful since it includes the cost of faulty agents, and we would want to optimize over non-faulty
agents. So a technique is proposed wherein we allow unequal weights and modify the problem to
argminh(x) =

∑n
i=1 αihi(x). The weight vector α must filter out the bad behavior. He also talked

about the issue of privacy and mentioned how variants of differential privacy can be applied here.
For example instead of communicating the cost function to neighbors directly we could add some
amount of balanced noise (that is a function of the value being sent) to it, that cancels over the
network.

Following this, there were some paper presentations and two other talks, one on Resilient Dis-
tributed State Estimation of Dynamical Systems by Shreyas Sundaram, and the other on Securing
Distributed Machine Learning in High Dimensions by Lili Su. The workshop concluded after the
tutorial by Kishori M. Konwar titled Erasure Coding in Consistent Object Stores: Advantages,
Challenges, Theory and Practice.

ACM SIGACT News 37 December 2018 Vol. 49, No. 4

References

[1] Reuven Bar-Yehuda, Oded Goldreich, Alon Itai: On the Time-Complexity of Broadcast in Radio
Networks: An Exponential Gap Between Determinism and Randomization. PODC 1987: 98-108

[2] Gregory V. Chockler, Alexey Gotsman: Multi-Shot Distributed Transaction Commit. DISC
2018: 14:1-14:18

[3] Alon Berger, Idit Keidar, Alexander Spiegelman: Integrated Bounds for Disintegrated Storage.
DISC 2018: 11:1-11:18

[4] James Aspnes, Bernhard Haeupler, Alexander Tong, Philipp Woelfel: Allocate-On-Use Space
Complexity of Shared-Memory Algorithms. DISC 2018: 8:1-8:17

[5] Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, Mor Perry: Redundancy in
Distributed Proofs. DISC 2018: 24:1-24:18

[6] Mohsen Ghaffari, Fabian Kuhn: Distributed MST and Broadcast with Fewer Messages, and
Faster Gossiping. DISC 2018: 30:1-30:12

[7] Ali Mashreghi, Valerie King: Broadcast and Minimum Spanning Tree with o(m) Messages in
the Asynchronous CONGEST Model. DISC 2018: 37:1-37:17

[8] Fabien Dufoulon, Janna Burman, Joffroy Beauquier: Beeping a Deterministic Time-Optimal
Leader Election. DISC 2018: 20:1-20:17

[9] Yehuda Afek, Shaked Rafaeli, Moshe Sulamy: The Role of A-priori Information in Networks
of Rational Agents. DISC 2018: 5:1-5:18

[10] Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, Tomasz
Radzik: A Population Protocol for Exact Majority with O(log5/3n) Stabilization Time and
Θ(logn) States. DISC 2018: 10:1-10:18

[11] Calvin Newport, Peter Robinson: Fault-Tolerant Consensus with an Abstract MAC Layer.
DISC 2018: 38:1-38:20

[12] Artur Czumaj, Christian Konrad: Detecting Cliques in CONGEST Networks. DISC 2018:
16:1-16:15

[13] Merav Parter, Eylon Yogev: Congested Clique Algorithms for Graph Spanners. DISC 2018:
40:1-40:18

ACM SIGACT News 38 December 2018 Vol. 49, No. 4

