
Distributed Computing Column 69
Proving PACELC and Concurrent Computing Summer School

Jennifer L. Welch
Department of Computer Science and Engineering

Texas A&M University, College Station, TX 77843-3112, USA
welch@cse.tamu.edu

The current column is devoted to concurrency from a pedagogical perspective. The first contri-
bution, from Wojciech Golab, revisits Brewer’s CAP principle (“consistency (C), availability (A),
and partition-tolerance (P) are not simultaneously achievable”) for large-scale distributed systems
and Abadi’s extension called PACELC (“if P then A or C, else L or C”). The paper presents an
alternative proof of the CAP theorem using a new latency lower bound for the asynchronous model,
and then provides a formal interpretation of PACELC.

The second contribution, from Petr Kuznetsov, is a review of the first summer school on Practice
and Theory of Concurrent Computing, which was held in summer 2017 in Saint Petersburg, Russia.
The article provides overviews of the topics covered in the summer school and ends with some first-
hand evaluations from teachers and students.

Many thanks to Wojciech and Petr for their contributions!

Call for contributions: I welcome suggestions for material to include in this column, including
news, reviews, open problems, tutorials and surveys, either exposing the community to new and
interesting topics, or providing new insight on well-studied topics by organizing them in new ways.

1

Proving PACELC

Wojciech Golab
University of Waterloo

Canada
wgolab@uwaterloo.ca

Abstract

Scalable distributed systems face inherent trade-offs arising from the relatively high cost
of exchanging information between computing nodes. Brewer’s CAP (Consistency, Availabil-
ity, Partition-Tolerance) principle states that when communication becomes impossible between
isolated parts of the system (i.e., the network is partitioned), then the system must give up
either safety (i.e., sometimes return an incorrect result) or liveness (i.e., sometimes fail to pro-
duce a result). Abadi generalized Brewer’s principle by defining the PACELC (if Partition then
Availability or Consistency, Else Latency or Consistency) formulation, which captures the ob-
servation that the trade-off between safety and liveness is often made in practice even while the
network is reliable. Building on Gilbert and Lynch’s formal proof of the CAP principle, this
paper presents a formal treatment of Abadi’s formulation and connects this result to a body of
prior work on latency bounds for distributed objects.

1 Introduction

Designers and implementers of distributed systems suffer many headaches over failures, concurrency,
and also physical limits related to the exchange of information between components. Notably, the
propagation delay for communication between data centers grows linearly with distance due to the
finite propagation speed of light, which makes it difficult to build systems that are scalable in a
geographic sense, and yet maintain low latency for practical workloads. To make matters worse,
failures of wide-area network links can partition a system into components that can communicate
internally but cannot communicate with each other. In this scenario, many systems are unable
to fulfill their goals, which can be categorized broadly as ensuring safety (e.g., never producing
incorrect outputs) and liveness (e.g., producing outputs eventually for all requests). Brewer’s CAP
principle summarizes this observation by stating that the combination of Consistency (safety),
Availability (liveness), and Partition tolerance are not achievable simultaneously.

Following Brewer’s keynote speech at PODC 2000 [3], the CAP Principle became the subject
of lively discussion, raising questions such as how to define consistency and availability precisely,

ACM SIGACT News 2 March 2018 Vol. 49, No. 1

and how to categorize existing systems according to which correctness property they sacrifice to
overcome the conjectured impossibility. This has led to some confusion, for example the “two out
of three” interpretation of CAP, which treats C, A and P symmetrically and suggests that every
system can be classified as AP, CP, or CA. In fact some systems (e.g., Apache Cassandra) can be
tuned to provide either AP, CP, or none of the above. Moreover, the interpretation of CA (i.e.,
consistent and available but not partition tolerant) is questionable because lacking P seems to imply
that either C or A is lost in the event of a partition, unless perhaps the system is not distributed
to begin with, in which case it tolerates partitions trivially. Abadi re-visited the CAP principle by
raising two technical points in his 2012 article [1]: (i) no trade-off is necessary at times when the
network is reliable, meaning that an AP or CP system may in fact provide both C and A most of
the time; and (ii) many practical systems sacrifice C to reduce latency (L) irrespective of network
failures. This observation is known as Abadi’s PACELC (“pass-elk”) formulation: if Partition then
Availability or Consistency, Else Latency or Consistency. This formulation distinguishes P from A
and C, thus discouraging the “two out of three” interpretation, and also separates the inherent C-A
trade-off during a network partition from the voluntary L-C trade-off exercised during failure-free
operation.1

In parallel with efforts by practitioners to finesse the interpretation of CAP and related trade-
offs, the theory community has sought to formalize these observations as mathematical facts. Two
years following Brewer’s keynote, Gilbert and Lynch [5] brought rigor to the discussion by formal-
izing CAP as the impossibility of simulating a read/write register in a message passing system that
simultaneously guarantees Lamport’s atomicity property [7] (consistency) and eventual termination
(availability) in the presence of a network partition (arbitrary message loss). This result is com-
monly referred to as the CAP theorem, and is distinguished from Brewer’s informal and intuitively
appealing conjecture. Naturally, the proof of the CAP theorem also validates PAC, or the first half
of Abadi’s PACELC formalism.

Building on the formal model adopted by Gilbert and Lynch [5], this paper aims to present a rig-
orous treatment of Abadi’s PACELC formulation by applying an alternative proof technique based
on latency bounds for shared objects. Specifically, the paper makes the following contributions:

• Section 3 discusses known latency bounds for shared objects in partly synchronous systems
[8, 2], and proves an analogous bound for the asynchronous model.

• Section 4 establishes a connection between latency bounds for shared objects and CAP-related
trade-offs by using the lower bound established in Section 3 to derive an alternative proof of
the CAP theorem.

• Section 5 states a formal interpretation of Abadi’s PACELC formulation in terms of the
results presented in Sections 3 and 4.

2 Formal Model

I/O automata and their composition Similarly to [5], this paper adopts the asynchronous
system model formalized by Lynch in Chapter 8 of [9]. There are n reliable processes that commu-
nicate using point-to-point FIFO (first-in first-out) communication channels. Two varieties of such

1 Abadi explains that latency is “arguably the same thing” as availability since a network that loses messages is
indistinguishable from one that delays message delivery indefinitely [1]. Thus, L is in some sense synonymous with
A.

ACM SIGACT News 3 March 2018 Vol. 49, No. 1

channels are considered in different parts of this paper: reliable channels that may delay messages
but guarantee eventual delivery, and unreliable channels that may drop message entirely. Both
processes and channels are modeled as I/O (input/output) automata, and their composition is an
automaton A representing a system that simulates a single read/write register. Process automata
are denoted P1, . . . , Pn, and the channel automaton by which Pi sends messages to Pj , i 6= j is
denoted Ci,j . Processes interact with channels using send and receive actions on messages. Pro-
cesses also support two types of output actions, invoke and respond, by which they initiate and
(respectively) compute the result of an operation on the simulated read/write register.

Executions and traces The behavior of the system in a given run is modeled as an execution,
which is an alternating sequence of states an actions, beginning with a start state determined by the
initial value of the simulated register. A trace corresponding to an execution α, denoted trace(α),
is the subsequence of invoke and respond actions (i.e., external actions) in α.2 The projection of
an execution α (respectively trace β) onto the actions of a particular process Pi is denoted α|Pi

(respectively β|Pi). We assume that every execution is well-formed, meaning that each process
executes an alternating sequence of invoke and respond actions, starting with invoke. The invoke
action is enabled for each process in every start state, and also in every state where the last output
action of the process was a respond.

Fairness and timing An execution is fair if every process or channel automaton that is enabled
to execute an action eventually either executes this action or ceases to be enabled to execute it. In
this context, fairness means that every message sent is eventually either dropped or received, and
every process eventually invokes another read or write operation if it has computed the response
of its previous operation. Thus, a fair execution may in principle have a finite trace if the protocol
becomes stuck with no actions enabled. Executions are timed, meaning that each event (occurrence
of an action) is tagged with a timestamp from a global clock.3 This makes it possible quantify the
time taken for a channel to deliver a message in an execution (time of receive minus time of send,
or else ∞ if receive does not occur), or the latency of a read or write operation (time or respond
minus time of invoke, or else ∞ if respond does not occur).

Correctness properties An execution α of the system automaton A is consistent if trace(α)
satisfies Lamport’s atomicity property for read/write registers [7] (a special case of Herlihy and
Wing’s linearizability property [6]), whose formalization is discussed in Chapter 13 of [9]. Quoting
[5], atomicity is explained informally as follows:

Under this consistency guarantee, there must exist a total order on all operations such
that each operation looks as if it were completed at a single instant.

For the impossibility results presented in this paper, it suffices to adopt a weaker notion of con-
sistency based on Lamport’s regularity property, which is easier to formalize. In the single-writer

2 The send action is an output action of each process automaton, and an internal action of the composed automaton
A. This is accomplished by hiding send actions in A.

3 The global clock is introduced to simplify analysis, and in this version of the model processes do not have access
to the clock.

ACM SIGACT News 4 March 2018 Vol. 49, No. 1

case, it states that a read must return either the value assigned by the last write preceding4 it in
the execution, or the value assigned by some write that is concurrent5 with the read.

An execution α of the system automaton A is available if for every process Pi, any invocation
action of Pi is eventually followed by a respond action of Pi (i.e., every operation invoked eventually
produces a response).

An execution α of the system automaton A is partition-free if for every message m sent, the send
action for m is eventually followed by a receive action for m (i.e., all messages sent are delivered
eventually).6

3 Latency bounds

Prior work on simulating read/write registers in a message passing model has established bounds
on operation latencies. Informally speaking, these results observe that r + w ≥ d where r and w
are upper bounds on the latencies of reads and writes, respectively, and d is a lower bound on
the network delay. This point was first proved by Lipton and Sandberg for the coherent random
access machine (CRAM) model [8], and then formalized and strengthened by Attiya and Welch for
sequential consistency [2]. Both results assume partly synchronous models, and therefore neither
can be applied directly in this paper because the worst-case latencies of reads and writes are
unbounded in the model defined in Section 2 due to asynchrony. In fact, the upper bounds r
and w do not exist if one considers all possible executions of a system, or even all fair executions.
This statement remains true even if message delays are constant (i.e., messages are delivered and
processed in a timely manner) because the processes are asynchronous. For example, a process
that is enabled to send a message may take an arbitrarily long time to transfer that message to a
communication channel.

The known lower bound on worst-case operation latency can be recast in the asynchronous
model as a lower bound over a special subset of executions. As stated in Theorem 3.1, the lower
bound is asserted universally for all executions in the special subset, and implies that operation
latency greater than half of the minimum message delay is inherent in the protocol rather following
from asynchrony alone.

Theorem 3.1. Let A be an automaton that simulates a read/write register initialized to value v0
in the asynchronous system model with at least two processes. Suppose that every execution of A
is consistent. Let α be any execution of A that is available, comprises a write by some process PW

of some value v1 6= v0 and a read by some other process PR, and where the two operations are
concurrent. Let r and w denote the latencies of the read and write in α, respectively, and let d > 0
be a lower bound on the message delay. Then r + w ≥ d.

Proof. Since every execution of A is assumed to be consistent, it follows that the read returns either
v0 or v1. Therefore, the following case analysis is exhaustive.

Case 1: The read returns v1.
First, note that the invoke action of PW ’s write causally precedes7 the respond action of PR’s read,

4 Operation op1 precedes operation op2 if op1 has a respond action and its timestamp is less than the timestamp
of the invoke action of op2.

5 Operation op1 is concurrent with operation op2 if neither op1 precedes op2 nor op2 precedes op1.
6 It is assumed without loss of generality that all messages sent are distinct.
7 The “causally precedes” relation is the transitive closure of two rules: action a causally precedes action b if a

occurs before b at the same process, or if a sends a message that is received in b.

ACM SIGACT News 5 March 2018 Vol. 49, No. 1

which implies that PW communicates with PR either directly or indirectly (i.e., by way of one or
more other processes) in α. This is because α is otherwise indistinguishable to PR and PW from an
execution where the events are shifted so that PR’s read responds before PW ’s write begins (i.e.,
v1 is read before v1 is written), which would contradict the assumption that all executions of A
are consistent. The causal relationship implies that α contains a set of messages m1,m2, . . . ,mk

for some k ≥ 1, such that PW sends m1 during its write, PR receives mk during its read, and
for 1 ≤ i < k the recipient of mi sends mi+1 after receiving mi. Such a scenario is illustrated in
Figure 1 in the special case where k = 1. Since the write begins before m1 is sent and the read
finishes after mk is received, it follows that the invoke action of PW ’s write is separated from the
respond action of PR’s read by k message delays or kd time. Moreover, since the two operations
are assumed to be concurrent, it also follows that the sum of their latencies is at least kd. Since
k ≥ 1, this implies r + w ≥ d, as required.

PW

PR

invoke
write(v1) respond

invoke
read

respond
with v1

message m
(delay d)

time

Figure 1: Execution α in the proof of Theorem 3.1.

Case 2: The read returns v0.
The analysis is similar to Case 1. First, note that the invoke action of PR’s read causally precedes
the respond action of PW ’s write, which implies that PR communicates with PW either directly or
indirectly in α. This is because α is otherwise indistinguishable to PR and PW from an execution
where the events are shifted so that PW ’s write responds before PR’s reads begins (i.e., v0 is read
after v1 is written), which would contradict the assumption that all executions of A are consistent.
The causal relationship implies that α contains a set of messages m1,m2, . . . ,mk for some k ≥ 1,
such that PR sends m1 during its read, PW receives mk during its write, and for 1 ≤ i < k the
recipient of mi sends mi+1 after receiving mi. Since the read begins before m1 is sent and the write
finishes after mk is received, it follows that the invoke action of PR’s read is separated from the
respond action of PW ’write by k message delays or kd time. Moreover, since the two operations are
assumed to be concurrent, it also follows that the sum of their latencies is at least kd. Since k ≥ 1,
this implies r + w ≥ d, as required.

The proof of Theorem 3.1 considers two operations on a single read/write register, as opposed
to [8, 2] where a weaker four operations on two registers are considered. This is a consequence of
the different interpretations of consistency: this paper deals with atomicity and regularity, which
assume that invoke and respond actions are totally ordered; [8, 2] deal with sequential consistency,
which assumes that such actions are only partially ordered (by program order and the “reads-from”

ACM SIGACT News 6 March 2018 Vol. 49, No. 1

relation).

4 From latency bounds to CAP

The CAP principle in the context of the model from Section 2 is stated formally in Theorem 4.1
below, which is modeled after Theorem 1 in [5].

Theorem 4.1 (CAP). Let A be an automaton that simulates a read/write register in the asyn-
chronous system model with at least two processes. Then A cannot satisfy both of the following
properties in every fair execution α (including executions that are not partition-free):

• α is consistent

• α is available

Gilbert and Lynch prove their version of Theorem 4.1 by contradiction, supposing initially that
A ensures both consistency and availability. They construct an execution α involving at least two
processes, initially partitioned into two disjoint groups {G1, G2} that are unable to communicate
with each other due to dropped messages. Letting v0 denote the initial value of the read/write
register, some process in G1 is chosen to invoke a write operation that assigns a new value v1 6= v0.
Since A ensures that α is available, even if it is not partition-free, this write produces a response
eventually. Next, a process in G2 is chosen to invoke a read operation, which once again produces
a response eventually. However, since there is no communication between processes in G1 and
processes in G2, α is indistinguishable to processes in G2 from an execution where the write never
occurs. Therefore, the read must return v0 instead of v1, which contradicts the assumption that α
is consistent in addition to being available.

Alternatively, Theorem 4.1 can be proved using the latency bound from Section 3. Roughly
speaking, the proof argues that if a system ensures consistency then operation latencies grow
with message delays, and hence operations cannot terminate eventually (i.e., system cannot ensure
availability) if the network is partitioned.

Alternative proof of Theorem 4.1. Let A be an automaton that simulates a read/write register in
the asynchronous system model with at least two processes. Suppose for contradiction that A
ensures that every fair execution is both consistent and available, even if the execution is not
partition-free. Let PW and PR be distinct processes, and suppose that the network drops all
messages. There exists a fair execution α1 of A where the initial value of the register is v0, then PW

writes v1 6= v0, then PR immediately reads the register (i.e., PR’s invoke action is consecutive with
PW ’s respond action) and produces a response. Since A ensures consistency even if the execution
is not partition-free, this implies that PR’s read returns v1 and not v0. Now let α2 be the prefix
of α1 ending in the state immediately following the read’s response. Since α2 is indistinguishable
to all processes from an execution where the messages are merely delayed and not dropped, it is
possible to extend α2 to a finite partition-free execution α3 by delivering all sent messages eventually
(after the response of the read), without introducing any additional read or write operations. Now
construct α4 from α3 by swapping the relative order of PR’s invoke action and PW ’s respond action,
which preserves the property that the execution is both consistent and available, and also makes
Theorem 3.1 applicable. Let w and r denote the latencies of the write and read, respectively, in
α4. Suppose without loss of generality that the message delay d in α4 is constant and greater than

ACM SIGACT News 7 March 2018 Vol. 49, No. 1

r+w, which ensures that no message sent by PW after starting its write can influence the outcome
of PR’s read operation. This scenario is illustrated in Figure 2 in the simplified case when PW and
PR are the only two processes in the system. Then α4 contradicts Theorem 3.1 since this execution
is both available and consistent with d > r + w.

PW

PR

invoke
write(v1)

invoke
read

respond
with v1

messages
from PW to PR

delayed

time

respond

Figure 2: Execution α4 in the alternative proof of Theorem 4.1.

5 Formal interpretation of PACELC

The conjunction of Theorem 4.1 and Theorem 3.1, both of which are proved in this paper using
latency arguments in an asynchronous model, constitutes a formal statement of Abadi’s PACELC
formulation. Theorem 4.1 implies that for executions that are fair and not partition-free, the
system cannot always guarantee both consistency and availability: if Partition then Availability or
Consistency. On the other hand, Theorem 3.1 implies that for executions that are partition-free,
the system cannot always guarantee both consistency and operation latency less than half of the
minimum message delay, irrespective of asynchrony (i.e., even if message delays are constant and
processing delays8 are zero): Else Consistency or Latency.

Attiya and Welch [2] proved that the latency lower bound r + w ≥ d stated in Theorem 3.1
is tight in a partially synchronous model where processes have access to local clocks that can be
used as timers, and where message delays are constant. Specifically, if message delays are exactly d
(which implies partition-freedom), then there exists a protocol that guarantees atomic consistency
and where either reads are instantaneous and writes have latency d, or reads have latency d and
writes are instantaneous. Such protocols maintain a copy of the register’s state at each process,
and use timed delays to compensate for message delays. For example, in the instantaneous read
protocol, a read operation returns the local copy of the state without any network communication,
whereas a write operation first broadcasts the new value to all other processes, then sleeps for d
time, and finally updates its local state. A process updates its local copy of the state instantaneously
upon receiving the broadcast value.

8 In the asynchronous model with timed executions, one can define processing delay as the time between when a
send, receive, or respond action is enabled and when that action is executed.

ACM SIGACT News 8 March 2018 Vol. 49, No. 1

Practical distributed storage systems such as Amazon’s Dynamo [4] and its open-source deriva-
tives are designed to operate in a failure-prone environment, and therefore rely on explicit acknowl-
edgments rather than timed delays to ensure delivery (i.e., receipt and processing) of messages
between processes. As a result, these systems exhibit operation latencies exceeding the lower bound
in Theorem 3.1 by a factor of at least two even in executions where message delays are exactly
d. For example, a quorum-replicated system such as Amazon’s Dynamo [4] can be configured for
local reading but then writing requires a full network round trip, or 2d time, to ensure Lamport’s
regularity property [7]. This is accomplished using full replication and a read-one, write-all quorum
configuration. Operation latency is increased further if the system is configured to tolerate server
failures, for example by using majority quorums, in which case both reads and writes require at
least 2d time.

6 Conclusion

This paper presented both an alternative proof of the CAP principle and a formal treatment
of Abadi’s PACELC formulation based on the inherent trade-off between operation latency and
network delay. These results complement and extend the CAP theorem of Gilbert and Lynch,
which was published prior to Abadi’s article, and draw a precise connection between CAP-related
trade-offs and latency bounds for shared objects.

References

[1] D. Abadi. Consistency tradeoffs in modern distributed database system design: CAP is only
part of the story. IEEE Computer, 45(2):37–42, 2012.

[2] H. Attiya and J. L. Welch. Sequential consistency versus linearizability. ACM Trans. Comput.
Syst., 12(2):91–122, 1994.

[3] E. A. Brewer. Towards robust distributed systems. In Proc. of the 19th ACM Symposium on
Principles of Distributed Computing (PODC), page 7, 2000.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasub-
ramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value store.
In Proc. of the 21st ACM Symposium on Operating System Principles (SOSP), pages 205–220,
October 2007.

[5] S. Gilbert and N. A. Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[6] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463–492, July 1990.

[7] L. Lamport. On interprocess communication, Part I: Basic formalism and Part II: Algorithms.
Distributed Computing, 1(2):77–101, June 1986.

[8] R. J. Lipton and J. Sandberg. PRAM: A scalable shared memory. Technical Report CS-TR-
180-88, Princeton University, 1988.

ACM SIGACT News 9 March 2018 Vol. 49, No. 1

[9] N. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

ACM SIGACT News 10 March 2018 Vol. 49, No. 1

The First Summer School on Practice and Theory of Concurrent
Computing SPTCC 2017

Petr Kuznetsov
Télécom ParisTech and Université Paris Saclay

France
petr.kuznetsov@telecom-paristech.fr

Nowadays concurrency is everywhere. Be it a mainstream multi-core machine, a computing
cluster, or a large-scale distributed service, a modern computing system involves multiple processes
that concurrently perform independent computations and communicate to synchronize their ac-
tivities. Understanding concurrency is therefore getting essential in both practice and research in
computer science.

The first summer school on Practice and Theory of Concurrent Computing took place on July
3-7, 2017 in Saint-Petersburg, Russia. The school was hosted by ITMO university, and financially
supported by DevExperts, Yandex, Télécom ParisTech, and ANR-DFG DISCMAT project.

ACM SIGACT News 11 March 2018 Vol. 49, No. 1

http://en.ifmo.ru/en/
https://devexperts.com/en/index.html
https://yandex.com/
https://www.telecom-paristech.fr/eng
http://discmat.telecom-paristech.fr/

1 Program

The goal of the school was to give both an introduction to the field of concurrency and a glimpse
of the state of the art. We interleaved classes on the fundamentals (wait-freedom and linearizabil-
ity, lock-based and nonblocking synchronization, universal constructions) with systems-oriented
classes (transactional data types, distributed recommenders, relaxed data structures and memory
management).

• The course “Locking, from Traditional to Modern” given by Nir Shavit served as an intro-
duction to the very basics of synchronization in computing, starting from simple Test-and-Set
locks and proceeding to increasingly more sophisticated locking techniques. The class explored
the efficiency features of various lock implementation, such as cache locality and scalability,
and concluded with a discussion of prominent client-server style locking, such as Owiki locks
and flat combining.

• Danny Hendler gave the course “Lock-free concurrent data structures” discussing concur-
rent algorithms that do not use locks. Such lock-free algorithms provide more resilience
with respect to asynchronous conditions than more conventional, lock-based algorithms. The
course covered lock-free algorithms for several concurrent data-structures, with a focus on
algorithmic techniques, such as elimination, that can be used for devising efficient lock-free
implementations.

ACM SIGACT News 12 March 2018 Vol. 49, No. 1

https://people.csail.mit.edu/shanir/
https://www.cs.bgu.ac.il/~hendlerd/

• “Wait-free computing for dummies”, the course given by Rachid Guerraoui, provided a study
of wait-free algorithms that enable the highest degree of robustness to asynchrony and fail-
ures. The course recalled the fundamental impossibility and universality results, and covered
implementations of read-write shared memory, snapshots and counters.

• Michel Raynal gave a comprehensive survey of universal constructions, algorithms that build
a distributed implementation of any object provided its sequential specification, with a focus
on basic concepts and mechanisms these constructions rely on.

• Maurice Herlihy offered the course “Transactional Memory”, devoted to a fascinating pro-
gramming abstraction that intends to enable a simple programming interface and to efficiently
exploit the increasing computing parallelism provided by modern machines. The course gave
a survey of the area, a discussion of existing algorithms and open research questions.

• Liuba Shrira gave the course “Implementation techniques for libraries of transactional con-
current data types” that addressed the relation between the semantics of a concurrent data
type and the efficiency of its implementations. It is often argued that transactional memory
is inherently subject to fundamental performance limitations caused by its very nature of
being universal. The course explored the advantages of knowing the semantics of a data type
in the transactional context and discussed mechanisms of tracking conflicts between abstract
operations.

ACM SIGACT News 13 March 2018 Vol. 49, No. 1

http://lpdwww.epfl.ch/rachid/
http://www.irisa.fr/prive/raynal/
http://cs.brown.edu/~mph/
http://www.cs.brandeis.edu/~liuba/

• The course “Recommenders and distributed machine learning: algorithms and systems” given
by Anne-Marie Kermarrec discussed the concept of recommendation and surveyed various
algorithmic techniques to implement it. The focus here was on distributed recommenders
based on collaborative filtering.

• Roman Elizarov, a leading software engineer at JetBrains and a tutor at ITMO University,
gave the course “Lock-Free Algorithms for Kotlin Coroutines”. The course gave an overview
of lock-free data structures, such as doubly-linked lists and multiword compare-and-swap
(CASN), that can be used as synchronization abstractions for Kotlin language coroutines.

• The course “Relaxed concurrent data structures” given by Dan Alistarh is devoted to the
emerging class of data structures that provide higher degree of parallelization at the expense
of weaker consistency guarantees.

• Erez Petrank proposed the course “Memory management for concurrent data structures”,
containing a comprehensive introduction into concurrent garbage collection. A particular
attention was devoted to the open problem of lock-free memory management. Then the
course discussed specific memory managers that are meant to provide support for lock-free
data structures without foiling their lock-free guarantees.

The school ended with a visit to the Saint-Petersburg office of Yandex, where Ivan Puzyrevskij
gave us a very interesting insight on how the Yandex data infrastructure is organized (apparently
an application-specific variant of Paxos is implemented from scratch!).

Links to the school material (slides, exercises and videos) are available at http://neerc.ifmo.
ru/sptcc/courses.html. A photo album can be found here.

ACM SIGACT News 14 March 2018 Vol. 49, No. 1

https://www.irisa.fr/asap/?page_id=179
https://www.jetbrains.com/
https://kotlinlang.org/
http://people.csail.mit.edu/alistarh/
http://www.cs.technion.ac.il/~erez/
https://yandex.com/
http://neerc.ifmo.ru/sptcc/courses.html
http://neerc.ifmo.ru/sptcc/courses.html
https://vk.com/album-35491074_246614987

2 Outcomes

I believe that this was the first time an event of this scale devoted to a topic in distributed computing
took place in Russia, and I am particularly happy that it happened in my beloved city of Saint-
Petersburg. It is safe to say that the school was a success, primarily thanks to the quality of the
courses and the engagement of the audience. It appears that both teachers and attendees enjoyed
it, which gives aspirations for future editions.

Last but not least, I would like to express my gratitude to the people without whom this
school would never take place. Vitaly Aksenov, a doctoral student at ITMO and INRIA, Paris,
was invaluable in the organization. Daria Kozlova, Daria Yakovleva and Vladimir Ulyantsev were
extremely helpful on on the ITMO side. We gratefully acknowledge the video and photo support
generously provided by Alexey Fyodorov and the JUG.ru team. Very special thanks should go
to Mikhail Babushkin, DevExperts, for helping on the financial side, and to Roman Elizarov for
inspiring the very idea of running such a school in Saint-Petersburg.

3 Personal impressions

We conclude with several personal accounts from teachers and attendees.

ACM SIGACT News 15 March 2018 Vol. 49, No. 1

https://jug.ru/
https://devexperts.com/en/index.html

I gave two lectures on emerging synchronization techniques, covering both hardware
and software aspects. A number of students asked questions, both during the lectures
and after class. I was impressed by the quality of the questions. The students were
very well-prepared, and had studied the material very carefully. (In fact, some of them
pointed out typos and small errors in my presentation.)

Above and beyond the technical aspects of the course, the ability for students to network
with a larger community is an important contribution of the school. Outside lectures, I
spoke to a number of students about their research, giving them advice on which topics
were timely, how to pursue specific topics, and which conferences might be appropriate
for their papers. I think some of these students felt isolated, and seemed very happy to
discover they could connect to a larger community of researchers. In the weeks since the
class ended, I have corresponded with several of the students, commenting on technical
issues, and offering advice on how to keep up with the current state of research in their
areas.

— Maurice Herlihy, Brown University, USA

I participated as a lecturer in the THE FIRST SUMMER SCHOOL ON PRACTICE
AND THEORY OF CONCURRENT COMPUTING. I enjoyed the experience very
much. The crowd was highly engaged and attentive. There were lines of students
waiting to ask questions in between the two lectures and after the second lectures.
The questions reflected knowledge and seriousness. Some of the attendants asked me
about joining my group to do research together, which seemed like a very strong positive
feedback. The organization was excellent and high quality videos of the lectures are now
available online. Last, I did not expect to enjoy the location so much. Saint Petersburg
is a great city and I recommend it to all.

— Erez Petrank, Technion, Israel

ACM SIGACT News 16 March 2018 Vol. 49, No. 1

I had the pleasure of attending the first ever summer school on the theory and practice
of concurrent programming. The school was very well organised, making normally
painful university bureaucracy a breeze. The invited speakers were of the absolute top
quality. The school size was small, about 100 people in attendance and single track so
I didn’t miss out on any lectures. I had the opportunity to sit down with the speakers
themselves during the breaks and during the student sessions. The one to ones I had
were very fruitful, leaving me with new ideas in my head and contacts for the future.
Discussions surrounding the exercises were very interesting, with new insights on how
other people solve problems and a lay of the land in the field itself. All in all it was the
most academically enlightening event I have ever had the fortune of attending.

— Robert Kelly, Graduate Student, Maynooth University, Ireland

I attended the first summer school on practice and theory of concurrent computing on
July 3rd to 7th at ITMO University in Saint Petersburg and I felt it was an extremely
valuable learning opportunity. During the summer school we had the opportunity to see
active researchers and practitioners in the field present on foundational and emerging
topics, with topics ranging from practical applications to theoretical foundations.

ACM SIGACT News 17 March 2018 Vol. 49, No. 1

Being able to interact with notable members of the research community, such as Maurice
Herlihy, was a special opportunity as someone just beginning my research career. All the
presenters were extremely knowledgable and insightful, and graciously answered many
student questions and inquires throughout. The mixture of both industry and academic
presenters gave me unique insights into the different approaches and concerns of industry
and academia toward problems in the field. I learned many valuable techniques and
insights into concurrent computing during the week that I hope to bring back to my
own research.

— David Tenty, Graduate Student, Ryerson University, Canada

I was participating in the SPTCC school, held on July 3-7 in the St. Petersburg, Russia.
There were several reasons why I decided to participate. First, the invited professors.
The school was the rare occasion to meet in person the most famous researchers in the
field and to learn about the cutting-edge research topics. Second, while being a prac-
titioner, I realize how important foundations of concurrent and distributed computing
are. To build a truly reliable, predictable and scalable system, one must have a strong
background in these areas. My objective for the school was to revisit and enrich my
knowledge – and that was fully accomplished.

Also, I was delighted to see both attendees from the industry and the academia. Hav-
ing a sustainable interest from both researchers and practitioners is important for the
discipline to flourish. I met colleagues working on programming languages, tooling,
high-frequency trading software and data infrastructure. Such a variety of applications
re-emphasizes the importance of school topics. I hope and to see and to help the school
return back next year.

— Ivan Puzyrevskij, Software Engineer, Yandex, Russia

ACM SIGACT News 18 March 2018 Vol. 49, No. 1

At first I wasn’t sure I would be able to participate, because my first baby had just been
born and required much attention from us. However, the organizers managed to gather
a respectable crowd of lecturers, so I couldn’t let that opportunity slip — and wasn’t
disappointed. The lectures covered both the classical topics and the new material. I
would highlight Nir Shavit’s lecture as the best one about classic results, Dan Alistarh’s
as the best one about current research, and Roman Elizarov for the practitioner’s point
of view. Another highlight is the exercises and a (somewhat improvized) discussion of
them at the end of the school, which was an excellent idea.

— Igor Baltiysky, Software Engineer, ALM Works, Russia

In the beginning of July 2017, the Summer School on Practice and Theory of Concurrent
Computing (SPTCC) took place in Saint-Petersburg. I was very fortunate to attend
it, as the curriculum consisted entirely of courses by brilliant lecturers, who initiated
and explored many exciting topics in concurrent computing. Having spent some of my
PhD on verification of concurrent algorithms, I was looking forward to getting a new
perspective at the state of research in the field.

Overall, the lectures were a great crash course for beginning students and offered quite
a bit of food for thought to more experienced ones. Outside of the lecture room,
the attendees could meet fellow students and concurrency enthusiasts from Facebook,
JetBrains, Yandex, Intel etc. Interacting with them was a great fun, which contributed
to a friendly atmosphere by the end of the school, and, of course, the beautiful city
of Saint-Petersburg also added a lot of charm to the event. All in all, I genuinely
recommend everyone interested in concurrent computing to keep an eye on the future
editions of SPTCC. Many thanks to Petr, Vitaly and the others from the organizing
committee for making an amazing event.

— Artem Khyzha, Graduate Student, IMDEA Software Institute, Spain

ACM SIGACT News 19 March 2018 Vol. 49, No. 1

ACM SIGACT News 20 March 2018 Vol. 49, No. 1

	Introduction
	Proving PACELC
	Introduction
	Formal Model
	Latency bounds
	From latency bounds to CAP
	Formal interpretation of PACELC
	Conclusion

	The First Summer School on Practice and Theory of Concurrent Computing SPTCC 2017
	Program
	Outcomes
	Personal impressions

