
Distributed Computing Column 65
Automatic Synthesis of Distributed Protocols and SIROCCO 2016 Review

Jennifer L. Welch
Department of Computer Science and Engineering

Texas A&M University, College Station, TX 77843-3112, USA
welch@cse.tamu.edu

Rajeev Alur and Stavros Tripakis have contributed an in-depth, yet accessible, article about
how to automatically synthesize distributed protocols. They explain how to formalize the problems
of verifying, synthesizing, and completing distributed protocols. “Completing” a protocol is the
problem of starting with partial information about the state machines of the processes and deter-
mining how to fill in the missing details in order to satisfy the specification. A recent algorithm
for protocol completion is described. The Alternating Bit Protocol is used as a running example
throughout, which provides helpful intuition. The article concludes with a list of intriguing open
problems in the area.

The second article is a review of SIROCCO 2016, which was held in Helsinki, Finland, by
Lewis Tseng. Lewis provides a lively report of the highlights of the conference, including Masafumi
(Mark) Yamashita’s receiving the SIROCCO Prize for Innovation, the invited talks, and a sampling
of the contributed talks. Don’t miss his photos of the beautiful locale.

Many thanks to Rajeev, Stavros, and Lewis for their contributions!

Call for contributions: I welcome suggestions for material to include in this column, including
news, reviews, open problems, tutorials and surveys, either exposing the community to new and
interesting topics, or providing new insight on well-studied topics by organizing them in new ways.

1

Automatic Synthesis of Distributed Protocols

Rajeev Alur
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA

alur@cis.penn.edu

Stavros Tripakis
Department of Computer Science, Aalto University
Department of Electrical Engineering and Computer

Sciences, University of California, Berkeley
stavros.tripakis@gmail.com

1 Introduction

Protocols for coordination among concurrent processes are an essential component of modern mul-
tiprocessor and distributed systems. The multitude of behaviors arising due to asynchronous con-
currency makes the design of such protocols difficult, and consequently analyzing such protocols
has been a central theme of research in formal verification for decades [25, 35, 13, 32]. Sus-
tained research in improving verification tools has resulted in powerful heuristics for coping with
the computational intractability of problems such as Boolean satisfiability and search through the
state-space of concurrent systems [11, 26, 15]. Now that automated verification tools are mature
enough to be applied to debugging of real-world protocols [12, 33, 23], the new research frontier is
protocol synthesis for simplifying the design process via more intuitive programming abstractions
for specifying the desired behavior.

Traditionally a distributed protocol is modeled as a set of communicating finite-state processes.
The correctness is specified by both safety and liveness requirements. In model checking, a given
model of the distributed protocol is checked against its correctness requirements specified in tempo-
ral logic. In reactive synthesis, the goal is to automatically derive a protocol from the given logical
requirements. The synthesis problem for reactive systems goes back to work in the 1960’s [10],
with finite automata on infinite words and trees providing the crucial algorithmic apparatus, with
some recent efforts to translate these results into practice [39, 30, 8] (see [18] for an excellent survey
of the theory of reactive synthesis, and www.syntcomp.org for benchmarks and a competition of
solvers). However, if we require the implementation to be distributed, then reactive synthesis is
undecidable [40, 21]. An alternative, and potentially more feasible approach inspired by program
sketching [49, 48], is to ask the programmer to specify an incomplete protocol to be completed
by the synthesizer so as to satisfy all the correctness requirements. This methodology for proto-
col specification can be viewed as a fruitful collaboration between the designer and the synthesis
tool: the programmer has to describe the structure of the desired protocol, but some details that

ACM SIGACT News 2 March 2017 Vol. 48, No. 1

the programmer is unsure about, for instance, regarding corner cases and handling of unexpected
messages, are filled in automatically by the tool.

The protocol synthesis problem then reduces to the following protocol completion problem: given
a set of finite-state machines for communicating processes with incomplete transition functions,
given a model of the environment, and given a set of safety and liveness requirements, find a
completion of the FSMs for the processes such that the composition satisfies all the requirements.
The computational complexity of this problem is Pspace, the same as that of model checking of
distributed protocols. However, now we need to cope with a search with two nested exponentials:
the number of possible completions of the incomplete input model is exponential and so is the
number of states of the product of all the component processes for any given completion. Advances
in model checking offer a way of dealing with the latter, while counterexample-guided inductive
synthesis (CEGIS) is a new technology that is a potential solution for the former [49, 3, 47].
The synthesis algorithm then consists of iterative invocations of two phases: the learner chooses
a candidate completion, which is then checked with respect to correctness requirements by the
verifier ; violations of the requirements are supplied to the learner to prune the search space in
subsequent iterations.

In this paper, using the Alternating Bit Protocol (ABP) as an illustrative example, we explain
the formalization of the protocol synthesis problem and review the CEGIS-based algorithm for
protocol completion from [6]. Section 2 describes the formal model for finite-state machines com-
municating via message passing since the quality of the synthesized protocols is very sensitive to
the nuances of modeling. In section 3, we formalize the analysis problems of verification, synthesis,
and completion for distributed protocols and review the computational complexity of solving these
problems. Section 4 contains the detailed model of the ABP example. In section 5, we describe the
protocol completion algorithm, along with the results of applying it to the ABP example. Section 6
concludes with a survey of related approaches, insights gained from our work, and directions for
future research.

2 Formal Model

The usefulness of automatic synthesis crucially depends on the nuances of the underlying protocol
model and how the synthesis problem is formalized. Our formal model is similar to the well-known
model of I/O automata for asynchronous distributed protocols [35], but we require the protocol
components to be synthesized to be deterministic (sequential) processes. The specific details of the
formalization are a minor variation of the description in [6].

2.1 Modeling Protocols

Finite-State Input-Output Processes

A finite-state input-output process is a tuple P = (I,O,Q,Q0, T, Tf) where (1) I is a finite set of
input events, (2) O is a finite set of output events with I ∩O = ∅ and I ∪O 6= ∅, (3) Q is a finite set
of states, (4) Q0 ⊆ Q is the set of initial states, (5) T ⊆ Q× (I ∪O)×Q is the transition relation,
and (6) Tf ⊆ T is the subset of transitions required to be executed in a strongly fair fashion. We

write a transition (q, x, q′) ∈ T also as q
x→ q′. When x ∈ I (resp., x ∈ O), the transition is called

an input (resp., output) transition and is also written as q
x?→ q′ (resp., q

x!→ q′).

ACM SIGACT News 3 March 2017 Vol. 48, No. 1

Note that we have not explicitly modeled internal transitions: such transitions are useful for
constraining what transitions are visible to the environment of a component, but are not crucial for
our purpose. On the other hand, fairness assumptions are essential for a protocol to satisfy liveness
requirements, and we use the standard notion of strong fairness formalized in the sequel.

A state q is called a deadlock if it has no outgoing transitions. A state q is input-enabled if for

every input event x ∈ I, there exists a state q′ such that q
x?→ q′. Thus, the process cannot proceed

from a deadlock state, and is ready to accept every possible input in an input-enabled state.

Semantics of Processes

Consider a process P = (I,O,Q,Q0, T, Tf). A run of P is a finite or infinite sequence of transitions

starting from some initial state: q0
x1→ q1

x2→ q2
x3→ · · · , with q0 ∈ Q0. We call the corresponding

sequence of events, x1, x2, x3, · · · , a trace.
A state q is called reachable if there exists a finite run starting from some initial state and

reaching that state: q0
x1→ q1

x1→ · · · xn→ q, for some q0 ∈ Q0 and some integer n ≥ 0. The process P
is deadlock-free if it has no reachable deadlock state.

To verify safety requirements, we need to consider all finite runs of the process, while to verify
liveness requirements we should focus on traces corresponding to all fair infinite runs. The intuition
is that an infinite run is unfair if some transition in Tf is enabled infinitely often, but never taken.
An infinite run ρ is said to be unfair if there exists a transition (q, x, q′) ∈ Tf such that (q, x, q′)
never appears in ρ, and the state q appears infinitely often in ρ. Otherwise, the infinite run ρ is
said to be fair. Note that if Tf is empty, then all infinite runs are fair by definition.

Composition of Processes

We define an asynchronous (interleaving-based) parallel composition operator with rendezvous syn-
chronization. Consider two processes P1 = (I1, O1, Q1, Q

1
0, T1, T

1
f) and P2 = (I2, O2, Q2, Q

2
0, T2, T

2
f).

In order for the composition of P1 and P2 to be defined, we require that the processes have no com-
mon output events, i.e., O1 ∩ O2 = ∅. Then, the composition of P1 and P2, denoted P1‖P2, is
defined to be the so-called product process:

P1‖P2 =̂
(
(I1 ∪ I2) \ (O1 ∪O2), O1 ∪O2, Q1 ×Q2, Q

1
0 ×Q2

0, T, Tf
)

where
(
(q1, q2), x, (q

′
1, q
′
2)
)
∈ T iff for i = 1, 2, if x ∈ Ii ∪Oi then (qi, x, q

′
i) ∈ Ti else q′i = qi. The set

of fair transitions of the product process is

Tf = {
(
(q1, q2), x, (q

′
1, q
′
2)
)
∈ T | (q1, x, q′1) ∈ T 1

f or (q2, x, q
′
2) ∈ T 2

f }.

Let us provide some intuition for the definition of composition. The set of input events of P1‖P2

is (I1 ∪ I2) \ (O1 ∪O2), meaning that it contains all inputs of either process which are not outputs
of the other. The output events are O1 ∪ O2, i.e., the outputs of either process. This means that
an output remains an output even after it has been “matched” by an input. However, an input is
removed once it has been matched by an output. Preserving output events allows multicasting in
the sense that a single output can synchronize with many inputs, from multiple receiver processes.

As is standard, a state of the product process is a pair of states, one from each of its component
processes. An initial state of the product is a pair of initial states, one from each component process.
A transition (q1, q2)

x→ (q′1, q
′
2) of P1‖P2 is one of the following three kinds. One where P1 issues an

ACM SIGACT News 4 March 2017 Vol. 48, No. 1

output, i.e., x ∈ O1. In that case, either x is an input of P2, i.e., x ∈ I2, or it is not. If x 6∈ I2, then
P2 does not move, and only P1 makes a transition. If x ∈ I2, then the two processes synchronize,

i.e., P1 makes an output transition q1
x!→ q′1 while P2 makes an input transition q2

x?→ q′2. The
symmetric case is where P2 issues the output. The third case is where x is an input for P1‖P2, i.e.,
x ∈ (I1 ∪ I2) \ (O1 ∪O2). In this case, if x is an input for both processes, i.e., x ∈ I1 ∩ I2, then the
two processes must synchronize. Otherwise, only one of the two processes moves.

Lastly, the definition of fair transitions for the product ensures that an infinite run of P1‖P2 is
unfair iff it violates the fairness conditions of either P1 or P2. In this way, the fairness assumptions
of P1‖P2 correspond logically to the conjunction of the fairness assumptions of each of P1 and P2.

The composition operator ‖ is commutative and associative, and thus, when we need to compose
several processes, the order of compositions does not matter.

Deterministic Processes

A distributed system is modeled as a composition of processes, some of which are protocol processes
that model components of the distributed protocol, and some of which are environment processes
that capture the environment in which the protocol operates. While environment processes are
unrestricted processes, we want protocol processes to satisfy some additional requirements.

First, we want a protocol process to be able to accept any given sequence of inputs. Without
such an assumption, one may get solutions to the synthesis problem that “cheat”, that is, protocols
that achieve certain properties by blocking certain events. For example, in the case of the ABP
example, presented in Section 4, the synthesized ABP Sender might achieve the property “every
send is eventually followed by a deliver” by simply refusing to accept send events from the Sending
Client process. Then, a send never happens and the property is satisfied trivially. This requirement,
typically referred to as input-enabledness or input-receptiveness, has been formalized in different
ways in the literature (see [22, 2, 5, 14, 54, 41]).

Second, we want a protocol process to be implementable as a deterministic sequential program.
This means that no state should have two outgoing transitions labeled with the same event: while
such nondeterministic transitions are useful to model an environment process (for instance, to
specify that a message may or may not get lost), in a deterministic process the next state is
determined uniquely from the previous state and the processed event. Furthermore, if an output
event is possible in a state, then the process is committed to producing this output, and cannot
accept inputs or produce any other output. In other words, execution of an output transition
is not in a “race” with other transitions, and the process can continue only after producing this
output. This assumption is common in deterministic models of concurrency such as Kahn process
networks [27] and their various dataflow restrictions [34].

Formally, a deterministic (sequential) process is a process P = (I,O,Q,Q0, T, Tf) satisfying all
following conditions: (1) the initial state is unique: the set Q0 contains a single state q0, (2) the
transition relation is deterministic: for every state q and input/output event x, if q

x→ q1 and q
x→ q2

are two transitions, then q1 = q2, (3) there is no race between input and output transitions: Q
is partitioned in two disjoint subsets, the set QI of states whose outgoing transitions are all input
transitions, called input states, and the set QO of states with only output outgoing transitions,
called output states, (4) input states are input-enabled: if q ∈ QI , then for every input event x

there exists a (unique) state q′ such that q
x?→ q′, (5) outputs are unique: an output state has a

single outgoing (output) transition, (6) inputs are eventually enabled: if the set of input events

ACM SIGACT News 5 March 2017 Vol. 48, No. 1

is non-empty, then from each state q ∈ Q, some input state must be reachable, and (7) enabled
output transitions are eventually executed: the set Tf of strongly fair transitions equals the set

TO = {q x→ q′ ∈ T | x ∈ O} of all output transitions.
The first condition ensures that the initial state of a deterministic process is determined uniquely.

Suppose the set I of inputs is non-empty. Then, at any step, the process is in either an input state
or an output state (due to condition (3)). In an input state, it can only accept inputs, is willing
to accept all possible inputs (due to condition (4)), and once such an input is received, the next
state is determined uniquely (due to condition (2)). In an output state, the process is not willing to
accept any inputs and is ready to produce a unique output event (due to condition (5)) and continue
to a uniquely determined next state. Condition (6) ensures that there are no deadlocks and no
cycles that consist of only output states, so the process will eventually proceed to a state where it is
willing to accept inputs. Finally, we require all output transitions to be strongly fair (condition (7)).
Requiring such output-fairness is reasonable, since when a protocol process reaches an output state,
we would like the (unique) output transition from that state to be eventually executed. Otherwise,
the process is ignored forever, which is clearly unfair. If the set I of inputs is empty, then a
deterministic process has only one run consisting of only output transitions, which could be finite
terminating in a deadlock state or infinite repeating a cycle of output transitions.

Our definition ensures that a deterministic process has a unique response to any given sequence
of input events: if A is a deterministic process and ρ is an infinite sequence of input events, then
there is exactly one run q0

x1→ q1
x2→ q2

x3→ · · · such that the run is fair and the projection of the
trace x1, x2, . . . on the input events equals ρ.

2.2 Modeling Requirements

For a distributed protocol specified as a composition of processes, its semantics is the set of traces
capturing its observable behaviors. A requirement is a classification of all possible traces into correct
and incorrect, and a protocol meets the requirement if all its traces are correct. Such requirements
are often specified in high-level formalisms such as temporal logic [36]. We will use instead the more
“low-level” formalism of monitors. Monitors are extensions of processes, and therefore are easier
to present while avoiding a discussion of temporal logic. Moreover, monitors naturally compose
with processes using the same principles. Finally, formulas in a temporal logic such as LTL (Linear
Temporal Logic) can be translated into the type of monitors used here [56], which means that we
do not lose in expressive power.

Automata

Monitors are essentially automata, i.e., processes equipped with additional sets of accepting states
modeling different types of acceptance conditions. In this work we consider two types of acceptance
conditions: error states to capture safety properties, and accepting states of type Büchi to capture
liveness properties.

Formally, we use the term automaton for a triple (P,Qe, Qa), where P = (I,O,Q,Q0, T, Tf) is
a process, Qe ⊆ Q is a (possibly empty) set of error states, and Qa ⊆ Q is a (possibly empty) set
of accepting states. We require that Qe ∩Qa = ∅.

ACM SIGACT News 6 March 2017 Vol. 48, No. 1

Monitors

A monitor is an automaton (P,Qe, Qa) satisfying the following conditions: (1) P = (I, ∅, Q,Q0, T, ∅),
that is, a monitor has no output events, and no fairness constraints; and (2) every state in Q is
input-enabled. These conditions ensure that the monitor is “passive”, i.e., when composed with
the system being monitored, a monitor only observes but does not otherwise interfere with the
system. In particular, input-enabledness ensures that monitors do not block the output events of
the system processes they synchronize with. If Qe 6= ∅ and Qa = ∅ then the monitor is called a
safety monitor. If Qa 6= ∅ and Qe = ∅ then the monitor is called a liveness monitor.

We use monitors to capture the negation of the properties that we want the system to satisfy,
i.e., to capture the violating traces. A run leading to an error state corresponds to a trace violating
a safety property, while a run visiting an accepting state infinitely often corresponds to a trace
violating a liveness property. A correct system will be one having no violating traces.

Consider a monitor M = (P,Qe, Qa). The notions of run, reachable state, deadlock, and so on,
apply to M in the sense that they refer to its corresponding process P = (I,O,Q,Q0, T, Tf).

The monitor M is said to be safe if it has no reachable error states, i.e., no q ∈ Qe is reachable.
An infinite run of M is said to be accepting if it visits accepting states (i.e., states in Qa)

infinitely often. The monitor M is said to be live if it has no infinite run that is both fair and
accepting.

Composition of Monitors, Automata, and Processes

We next define automata composition as an extension of process composition. Since monitors are
special cases of automata, this also defines composition of monitors, as well as composition of mon-
itors with automata. Moreover, processes can be viewed as special cases of automata with empty
sets of error and accepting states. Therefore, the composition of all three types of components,
processes, automata, and monitors, is also defined. Associativity and commutativity of process
composition extends to the case of automata composition as well.

Consider two automata A1 = (P1, Q
1
e, Q

1
a) and A2 = (P2, Q

2
e, Q

2
a). In order for the composition

of A1 and A2 to be defined, we require that the composition of their processes, P1‖P2, is defined.
Let P1 = (I1, O1, Q1, Q

1
0, T1, T

1
f), P2 = (I2, O2, Q2, Q

2
0, T2, T

2
f), and P1‖P2 = (I,O,Q,Q0, T, Tf).

Then, the composition of A1 and A2, denoted A1‖A2, is defined to be the automaton A1‖A2 =
(P1‖P2, Qe, Qa), where Qe = (Q1

e ×Q2) ∪ (Q1 ×Q2
e) and Qa = (Q1

a ×Q2) ∪ (Q1 ×Q2
a).

A state (q1, q2) is an error state of A1‖A2 if either q1 is an error state of A1 or q2 is an error
state of A2. Similarly, (q1, q2) is an accepting state of A1‖A2 if either q1 is an accepting state of A1

or q2 is an accepting state of A2. When A1 and A2 are monitors, these definitions imply that in
order for a violation to occur in the product monitor, it must occur in at least one of its component
monitors. Note that this definition “works” because we use monitors to model not the properties
we want the system to satisfy, but the negation of those properties. Indeed, suppose we want the
system to satisfy several properties, say φ1, φ2, ..., φn; that is, we want the system to satisfy their
conjunction φ = φ1 ∧ φ2 ∧ · · · ∧ φn. Then we can build a separate monitor Mi which captures the
negation of each property, i.e., ¬φi. The definition of product error and accepting states ensures
that the product M1‖ · · · ‖Mn captures the disjunction ¬φ1 ∨ · · · ∨ ¬φn, which is equivalent to the
negation of the global property φ.

ACM SIGACT News 7 March 2017 Vol. 48, No. 1

3 Analysis and Synthesis Problems

3.1 Protocol Verification

In the verification problem, the protocol is modeled as a set P1, . . . Pm of processes and the require-
ments are captured by a set M1, . . .Mn of monitors. The verification problem is to check if the
system is correct:

Problem 1 (Distributed Protocol Verification). Given a set of processes P1, . . . Pm and a set of
monitors M1, . . .Mn, check if (1) the product P1‖ · · · ‖Pm is deadlock-free, and (2) for i = 1, . . . n,
the product P1‖ · · · ‖Pm‖Mi is both safe and live.

The first condition checks the implicit requirement of absence of deadlocks and the second
condition checks that the protocol satisfies each of the explicit safety and liveness requirements.
Each of these conditions can be checked separately, and for the second, correctness with respect to
each monitor can also be checked separately. Each check requires exploration of the global state-
space of the product of all the processes. Checking safety corresponds to checking reachability
of error states in the product, while checking liveness corresponds to detecting reachable cycles
that contain accepting states and satisfy fairness assumptions. The theoretical complexity of the
verification problem is Pspace since this exploration can be done without explicitly constructing
the exponential-sized product graph [56, 13]:

Theorem 1. The distributed protocol verification problem is Pspace-complete.

The exponential growth in the size of the global state-space is called “state-space explosion”,
and in the last thirty years a number of heuristic approaches have been proposed to cope with this
problem. Examples of model checkers that incorporate these approaches and have been successfully
applied to real-world protocols include SPIN [26], SMV [11], and Murphi [16].

3.2 Protocol Synthesis

In the protocol synthesis problem, we are given a set of processes that model the environment and a
set of monitors that capture the requirements. We are also given the communication architecture,
that is, the set of inputs and outputs through which the protocol processes to be synthesized
may communicate. The synthesis problem then is to construct the desired protocol processes as
deterministic processes so that the composed system meets the safety and liveness requirements of
the monitors as well as the implicit requirement of absence of deadlocks.

An input-output interface (or IO interface, for short) is a pair (I,O), where I is a set of input
events and O is a set of output events such that I ∩ O = ∅ and I ∪ O 6= ∅. We are now ready to
define the distributed protocol synthesis problem (DPS):

Problem 2 (Distributed Protocol Synthesis). Given a set of processes P e
1 , ..., P

e
k , called the envi-

ronment processes, a set of IO interfaces (I1, O1), ..., (Im, Om), and a set of monitors M1, ...,Mn,
find, if there exist, a set of deterministic processes P1, ..., Pm, called protocol processes, such that:
(1) for i = 1, . . .m, each Pi has the interface (Ii, Oi), that is, Pi = (Ii, Oi, Qi, q

i
0, Ti, T

i
f), for some

Qi, q
i
0, Ti, T

i
f , (2) the product P e

1 ‖ · · · ‖P e
k‖P1‖ · · · ‖Pm is deadlock-free, and (3) for each i = 1, . . . n,

the product P e
1 ‖ · · · ‖P e

k‖P1‖ · · · ‖Pm‖Mi is both safe and live.

ACM SIGACT News 8 March 2017 Vol. 48, No. 1

To understand the difficulty in solving the distributed protocol synthesis problem, let us focus on
a special case: suppose we have no environment processes and a single deterministic safety monitor
M . Let the set of IO interfaces be (I1, O1), ..., (Im, Om). That is, we want to synthesize protocol
processes Ai with input Ii and outputs Oi, where the monitor M imposes a safety requirement on
the desired communication pattern. The synthesis problem then corresponds to finding a winning
strategy in a multi-player game played over the states of monitor M , where the players correspond
to the processes to be synthesized. The game starts in the initial state of the monitor. At every
step one of the players takes a step: a step by the process Ai corresponds to an event in Oi and
this updates the monitor state according to the transition function. The strategy of the player Ai

determines which event in Oi is to be produced, and it can depend only on the sequence of events
in Ii that have been played so far. Such a strategy can be formalized as a function from I∗i to Oi:
based on the sequence of inputs observed so far, it produces the next output. Note that the player
does not know the entire history, and thus, has only partial information about the state of the
monitor. If we fix a strategy for each of the players, then we get a unique run of the monitor, and
if this run avoids the error states, then the strategies are winning. Such winning strategies when
viewed as deterministic automata give us a solution to the synthesis question. Thus, the distributed
synthesis problem reduces to finding winning strategies in a multi-player partial information game.
Such games unfortunately are undecidable even when the number of players is two [38]. This does
not directly imply undecidability of the distributed synthesis problem, but essentially the same
proof idea can be used to show that as long as we have two unknown processes and a non-trivial
specification, the synthesis problem is undecidable [40].

Theorem 2. The distributed protocol synthesis problem is undecidable.

There have been efforts to identify restrictions on the pattern of communication among the
processes to be synthesized so as to ensure decidability of the synthesis problem. We refer the
reader to [21, 18] for sufficient and necessary conditions on the communication architecture for
decidability. Unfortunately, the communication pattern in our case study of the Alternating Bit
Protocol does not fall within the decidable class.

Supervisory Control

Reactive synthesis is related to the theory of supervisory control for discrete-event systems [43, 44].
A comparative introduction of reactive synthesis and supervisory control can be found in [17].
Supervisory controller synthesis has been studied extensively, for the cases of fully observable or
partially observable systems, centralized or decentralized controllers, and many other cases (e.g.,
see [50, 9]). Particularly related to the topic of this paper is the case of decentralized control.
Undecidability of decentralized supervisory control problems has been shown in [31, 51] for the
case of ω-regular languages and in [52, 53] for the case of regular languages. Other variants of
decentralized supervisory control had earlier been shown to be decidable [46, 45].

3.3 Protocol Completion

In the protocol synthesis problem, we only know the input-output interface of each of the protocol
processes to be synthesized, and need to figure out the set of states and transitions necessary to
implement the desired logic. In a less demanding version of the problem, that we call completion,

ACM SIGACT News 9 March 2017 Vol. 48, No. 1

we have some partial information regarding the states and transitions of the protocol processes and
need to only fill in the missing details.

An incomplete process is a process with some of its elements missing, or incomplete. For
the purposes of this paper, we will define an incomplete process to be simply a process with a
possibly incomplete set of transitions. Extra transitions can be added to such a process during a
completion process. Formally, an incomplete process P is defined by a tuple of the same type as
a normal process, where the set of fairness constraints is initially empty: P = (I,O,Q, q0, T, ∅).
Given a set of transitions T ′ ⊆ Q × (I ∪ O) × Q, the completion of P with T ′ is the new process
P ′ = (I,O,Q, q0, T ∪T ′, Tf), which is required to be a deterministic process. The requirement that
P ′ is deterministic implicitly determines the set of strongly fair transitions Tf to be the set of all
output transitions in T ∪T ′. This includes all existing output transitions in T , as well as any newly
added output transitions in T ′.

We now define a second synthesis problem, which we call distributed protocol completion (DPC):

Problem 3 (Distributed Protocol Completion). Given a set of environment processes P e
1 , ..., P

e
k ,

a set of incomplete protocol processes P1, ..., Pm, and a set of monitors M1, ...,Mn, find, if there
exist, sets of transitions T1, . . . Tm such that: (1) for each i = 1, . . .m, the completion P ′i of Pi with
Ti is a deterministic process, (2) the product P e

1 ‖ · · · ‖P e
k‖P ′1‖ · · · ‖P ′m is deadlock-free, and (3) for

each i = 1, . . . n, the product P e
1 ‖ · · · ‖P e

k‖P ′1‖ · · · ‖P ′m‖Mi is both safe and live.

While protocol synthesis is undecidable, the protocol completion problem is decidable for the
following reason. Every incomplete protocol process has a finite number of states, and only transi-
tions, but no states, can be added during completion. The sets of input and output events of each
process are both finite, and thus so is the set of all possible transitions. There is a finite number of
protocol processes to be completed, and each one admits a finite number of completions, therefore,
the total number of completion combinations is also finite. For every possible completion, we can
then use protocol verification to check if the completion satisfies all the desired requirements. It
is also easy to see that the protocol completion problem belongs to the complexity class Pspace:
the description of each completed process P ′i is polynomial in the description of the incomplete
process Pi, and thus, the desired completions can be guessed in polynomial space, and for a given
completion, its validity can be checked using a Pspace algorithm for the protocol verification
problem.

Theorem 3. The distributed protocol completion problem is Pspace-complete.

The completion problem in general has the same complexity, Pspace, as the verification prob-
lem, but unlike the verification problem, it is still hard (NP-complete) even for a constant number
of processes [6].

4 Illustrative Example: the Alternating Bit Protocol

The Alternating Bit Protocol (ABP) is a standard communication protocol that provides reliable
(i.e., lossless) transmission of a message over an unreliable (i.e., lossy) channel. ABP achieves this
by retransmitting the message when the message is deemed lost. ABP is used routinely to illustrate
formal modeling and verification techniques [26, 35, 42], and indeed is simple enough to illustrate
our approach to distributed protocol synthesis.

ACM SIGACT News 10 March 2017 Vol. 48, No. 1

4.1 ABP System Architecture

The system architecture of the ABP model is shown in Figure 1. The figure shows all the processes of
the model, depicted as rectangles or circles, and their communication events (inputs and outputs),
depicted as labeled arrows. The figure also shows the safety and liveness monitors used in our
model. Protocol processes are denoted by circles. Environment processes and monitors are denoted
by rectangles.

The system contains seven processes in total:

• The protocol processes ABP Sender and ABP Receiver.

• The environment processes Forward Channel and Backward Channel. These two processes
model the two lossy channels linking the ABP Sender and Receiver.

• The environment processes Sending Client and Receiving Client which model two client pro-
cesses: the former wants to send messages to the latter. The messages must be transmitted
reliably, even though the channels are unreliable.

• The environment process Timer which issues timeouts.

The communication between the system processes is as follows:

• ABP Sender communicates with Forward Channel via events p0 and p1, modeling the trans-
mission of a message annotated with bit 0, and that of a message annotated with bit 1,
respectively. We are not interested in the value of the message itself, and therefore do not
model what is carried in the “body” of the message, but only in its “header”. In this simple
protocol, the header consists of a single bit. Events p0, p1 are output events for the ABP
Sender, and input events for the Forward Channel.

• Forward Channel communicates with ABP Receiver via events p′0 and p′1. These two events
also model the transmission of a message with 0 or 1, but they are primed, in order to be
distinct from p0, p1. The reason we want to distinguish p′0, p

′
1 from p0, p1, is that p0, p1 are

used to synchronize the transitions of ABP Sender and Forward Channel (but not of ABP
Receiver), whereas p′0, p

′
1 are used to synchronize the transitions of Forward Channel and ABP

Receiver.

• Events a0, a1 and a′0, a
′
1 model acknowledgment messages annotated with the bit 0 or 1, and

sent from the receiver to the sender through the backward channel.

• The Sending Client communicates with ABP Sender with events send and done. Event send
models the message that the sending client gives to the ABP protocol for delivery to the
receiving client. Event done models the response from the protocol that the message has
been successfully delivered.

• Event deliver models the delivery of the message to the receiving client.

• Event timeout models the occurrence of a timeout. The sender uses such timeouts to retrans-
mit messages as it deems necessary.

ACM SIGACT News 11 March 2017 Vol. 48, No. 1

ABP
Sender

Forward
Channel

Backward
Channel

ABP
Receiver

Safety Monitor 1

Safety Monitor 2

Liveness Monitor 1

Liveness Monitor 2

Liveness Monitor 3

Sending
Client

Receiving
Client

Timer

timeout

send

done

deliver

p0, p1 p′0, p
′
1

a′0, a
′
1 a0, a1

send, deliver

deliver, done

send, deliver

send, done

all 12 system events

Figure 1: ABP system architecture.

4.2 The Environment Processes

The two channel processes are shown in Figure 2. Circles denote states and arrows between states
denote transitions. Arrows without a source state denote initial states. Transitions with bold lines
and double arrows denote strong fairness constraints, further discussed in §4.5. Transitions are
labeled with input or output events. A ‘?’ following an event indicates an input event, while ‘!’
indicates an output event (c.f. §2.1).

Both channels have capacity 1, meaning that they can store at most one message. In the Forward
Channel, state f0 corresponds to the channel being empty, either because it hasn’t received any
message yet, or because it has lost the last message received. When a message, say p0, is sent to
an empty channel, the channel may nondeterministically either take the self-loop transition and
remain at f0, meaning that it loses the message, or take the transition from f0 to f1, meaning that
it stores the message. Then, from f1, the channel may choose to take, nondeterministically, either
the transition labeled p′0! back to f0, or the self-loop with the same label which remains at f1. The
first transition corresponds to the channel forwarding (correctly) a single copy of the message it
received. The self-loop transition corresponds to the channel choosing to forward multiple copies
(two or more) of the message. This models another typical defect of communication channels,
namely, message duplication. In addition to the outgoing transitions from f1 labeled with the
output event p′0, state f1 also contains self-loop transitions labeled with the input events p0 and p1.
These self-loops capture what happens if the channel receives a new message while it still hasn’t
completed forwarding the last message it received. In such a case, the most recent message is simply
ignored, i.e., lost.

The Backward Channel is similar to the Forward Channel and therefore not described in further
detail.

The environment processes Sending Client, Receiving Client, and Timer are shown in Figure 3.
Sending Client sends a message and then waits for done before sending the next message. Receiving
Client simply accepts any message delivered to it. Timer can issue a timeout at an arbitrary point in

ACM SIGACT News 12 March 2017 Vol. 48, No. 1

f0

f1

f2

p0?

p′0!

p1?

p′1!

p0?

p1?

p0?

p1?

p′0!

p0?

p1?

p′1!

b0

b1

b2

a0?

a′0!

a1?

a′1!

a0?

a1?

a0?

a1?

a′0!

a0?

a1?

a′1!

Figure 2: Environment processes Forward Channel (left) and Backward Channel (right). Transitions
in bold lines and double arrows are strongly fair, meaning they cannot be enabled infinitely often
without being taken.

sc0 sc1

send !

done ?

done ?

rc0

deliver ?

t0

timeout !

Figure 3: Environment processes Sending Client (left), Receiving Client (middle), and Timer (right).

time. This is a conservative way of modeling timeouts, which in reality occur at precise moments in
time, after certain durations specified as part of the timing parameters of the protocol. Our model
is untimed and cannot capture such quantitative constraints. Still, our model is conservative: if a
protocol works correctly assuming that timeouts can occur at any time, then surely it will also work
correctly when timeouts can occur only after certain specified durations. Timed formalisms such as
timed automata [4] exist, allowing to capture quantitative timing constraints. But such formalisms
typically involve much more computationally expensive analysis and synthesis algorithms.

Note that all environment processes are able to accept all their input messages at every state.
This holds trivially for process Timer which has no inputs. The self-loop labeled done? at state sc0
of the Sending Client is added in order to achieve this property. This property ensures that none
of the environment processes can block any output event of another process at any time.

ACM SIGACT News 13 March 2017 Vol. 48, No. 1

q0

q1

q2

send ?

deliver ?
send ?

deliver ?

send ?

deliver ?

Figure 4: Safety monitor 1 for the ABP system: “send and deliver happen in the right order”.
State q2 is the error state, meaning that the safety property is violated if the monitor ever enters
that state.

q0

q1

q2

deliver ?

done ?
deliver ?

done ?

deliver ?

done ?

Figure 5: Safety monitor 2 for the ABP system: “deliver and done happen in the right order”.

4.3 Safety and Liveness Properties: the Monitors

In addition to deadlock freedom, the system must satisfy certain safety and liveness properties
captured by the safety monitors of Figures 4 and 5, and the liveness monitors of Figures 6 and 7
(and possibly also of Figure 8, as discussed in the sequel).

The safety monitor of Figure 4 captures the property that events send and deliver must occur
in the right order: a deliver cannot occur unless a send occurs before, and two sends cannot occur
in a row without a deliver in-between. State q2 of the safety monitor is the error state. If ever the
safety monitor enters that state, the property has been violated.

The safety monitor of Figure 5 captures the property that events deliver and done must occur
in the right order. This monitor has exactly the same structure as the monitor of Figure 4, except
that deliver is replaced by done, and send by deliver.

We want the system to satisfy the liveness property that every send must eventually be followed
by a deliver, i.e., that every message is eventually delivered.1 The liveness monitor of Figure 6,
with accepting state q1, captures the negation of this property. That is, a behavior is accepted by
this monitor iff it violates the property. Such a violating behavior is one where at some point a
send occurs (upon which the monitor moves from q0 to q1) and no deliver ever occurs after that
(therefore the monitor gets “stuck” in q1 forever, thus accepting the behavior). Note that this
automaton is nondeterministic: from q0, upon observing event send, it can either remain at q0 or

1 In LTL, this property can be stated as G(send → Fdeliver).

ACM SIGACT News 14 March 2017 Vol. 48, No. 1

q0 q1 q2

send ?

deliver ?

send ?

send ?

deliver ?

send ?

deliver ?

Figure 6: Liveness monitor 1 for the ABP system: “every send is eventually followed by a deliver”.

q0 q1 q2

send ?

done ?

send ?

send ?

done ?

send ?

done ?

Figure 7: Liveness monitor 2 for the ABP system: “ every send is eventually followed by a done ”.

move to q1. This nondeterminism captures in a simple manner violating behaviors where the send
event causing the violation is not necessarily the first one.

The liveness monitor of Figure 7 captures the property that every send must eventually be
followed by a done, i.e., that the sending client is eventually notified of the successful delivery of
a message.2 This monitor has exactly the same structure as the monitor of Figure 7, except that
deliver is replaced by done.

A final liveness property that we sometimes use in our experiments is the property that send
occurs infinitely often.3 This property is useful for eliminating some synthesis solutions which turn
out to be blocking.4 The liveness monitor for this property is shown in Figure 8. This monitor
receives as inputs all 12 events of the ABP system. Each transition labeled “any” represents a
multitude of 12 transitions, one for each of these 12 input events. Similarly, the transition labeled
“any except send ” represents 11 transitions, one for each input except input send. Note that from
state q0 of this monitor there is a non-deterministic choice for every input event, e.g., for input
event p0, there is the transition q0

p0→ q0 and also the transition q0
p0→ q1. On the other hand

determinism holds at states q1 and q2. In particular, send leads only to q2 from q1, and any other
event from q1 leads back to q1.

4.4 ABP Sender and Receiver

We now present a first version of the ABP sender and receiver processes. This version was built
“manually”, based on textbook descriptions of the ABP protocol.

2 In LTL, this property can be stated as G(send → Fdone).
3 In LTL, this property can be stated as GFsend .
4 Such solutions may be generated due to current limitations of our tool, which does not ensure that all conditions

of a deterministic sequential process are met. In particular the tool does not ensure condition (6) – c.f. ‘Deterministic
Processes’, page 5.

ACM SIGACT News 15 March 2017 Vol. 48, No. 1

q0 q1 q2

any

any

any except send

send ?

any

Figure 8: Liveness monitor 3 for the ABP system: “ send occurs infinitely often ”. Each transition
labeled “any” represents a multitude of transitions, one for each input event to the monitor. Sim-
ilarly, the transition labeled “any except send ” represents a multitude of transitions, one for each
input except input send.

s0

s1 s2 s3

s4

s5s6s7

a′1?

a′0?

timeout ?

send ?

p0!

timeout ?

a′1?

a′0?

send ?

done !

a′1?

a′0?

timeout ?

send ?p1!

timeout ?

a′0?

a′1?

send ?

done !

Figure 9: “Manually” constructed ABP Sender.

ABP Sender

The ABP Sender process is shown in Figure 9. It is a deterministic process with 8 states, out of
which 4 are input states (s0, s2, s4, s6) and 4 are output states (s1, s3, s5, s7). Notice that all input
states have outgoing transitions for each one of the 4 input events of the ABP Sender, therefore,
all these states are input-enabled.

The sender starts at state s0, where it is idling, awaiting a send, i.e., awaiting to begin trans-
mission of a message, and ignoring all other input events (a′0, a

′
1, and timeout). Once it receives a

send, the sender moves to state s1 and sends p0 to the forward channel. After that it moves to state
s2, where it waits for an acknowledgment from the ABP Receiver process. The acknowledgment
must be annotated with the same bit as the message, i.e., bit 0 in this case. Therefore the expected
acknowledgment event at state s2 is a′0. If the wrong acknowledgment a′1 is received, it is simply
ignored (self-loop at state s2). If the right acknowledgment a′0 is received, this means that the
message has been successfully transmitted: therefore the sender moves to state s3, upon which it
sends a done event to the Sending Client, and moves to state s4 to wait for a new message.

At state s2, it is also possible for the sender to receive a timeout. In that case, it moves back to
state s1 and retransmits the message, i.e., sends a new p0 event to the forward channel.

The operation of the sender along states s4, s5, s6, s7 is symmetric to its operation along states

ACM SIGACT News 16 March 2017 Vol. 48, No. 1

r0 r1 r2

r3r4r5

p′0?

p′1?

deliver !

a0!p′0?

p′1?deliver !

a1!

Figure 10: “Manually” constructed ABP Receiver.

s0, s1, s2, s3. The difference is that now the bit is switched from 0 to 1 (hence the term alternating
bit).

ABP Receiver

The ABP Receiver process is shown in Figure 10. It is a deterministic process with 6 states, out of
which 2 are input states (r0, r3) and 4 are output states (r1, r2, r4, r5). Note that all input states
of the ABP Receiver process are input-enabled.

The receiver starts at state r0, where it is idling and awaiting for an input event. If that input
event is p′0, then it indicates a new incoming message, since the alternating bit 0 is the correct
“next one” in sequence. In that case, the receiver delivers the message to the Receiving Client by
sending a deliver, and replies to the ABP Sender with an acknowledgment, by sending a0 to the
Backward Channel. Note that the acknowledgment is annotated with the same bit as the message
received, namely, 0 in this case.

If, on the other hand, the input received at state r0 is not p′0, but p′1, then this indicates an
“out of sequence” incoming message. For instance, it could be a redundant retransmission by the
sender, due to a lost acknowledgment. In that case, the receiver retransmits the last transmitted
acknowledgment, i.e., a1 in this case.

The operation of the receiver at states s3, s4, s5 is symmetric to that at states s0, s1, s2, with
the role of the alternating bit switched from 0 to 1.

4.5 Fairness Assumptions

The ABP Sender and Receiver cannot fulfill the protocol’s liveness requirements unless we impose
some fairness assumptions on the model.

The first assumption that we need is that the channels do not lose all messages. Indeed, without
this assumption, the behavior send, p0, timeout, p0, timeout, · · · , is possible, where the Forward
Channel keeps self-looping at state f0, always losing message p0, thus violating the property that
send is eventually followed by deliver. To avoid such behaviors, we declare the following transitions
of the two channels as strongly fair: (f0, p0?, f1), (f0, p1?, f2), (b0, a0?, b1), and (b0, a1?, b2).

The second assumption that we need is that the channels don’t get “stuck” at their “full” states,
continuously replicating output messages. Here, the violating traces are more subtle. For instance,
during the first send cycle, where the sender sends p0, the Forward Channel may get stuck at state
f1. In the next send cycle, the sender sends p1. But since the Forward Channel is at state f1, it
keeps ignoring p1. Therefore, a deliver never follows the second send. To avoid such behaviors,

ACM SIGACT News 17 March 2017 Vol. 48, No. 1

we declare additionally the following transitions of the two channels as strongly fair: (f1, p
′
0!, f0),

(f2, p
′
1!, f0), (b1, a

′
0!, b0), and (b2, a

′
1!, b0).

The third assumption that we need is that if deliver is possible, it will eventually happen.
This is achieved by the strong fairness assumption on the transitions (r1, deliver !, r2) and
(r4, deliver !, r5) of the ABP Receiver. Without this assumption, the behavior send , p0, timeout , p′0, p0, timeout , p0, timeout , · · ·
is possible. In this behavior, the Forward Channel gets “stuck” at state f1, opting for the self-loop
transition there when it sends p′0, instead of the transition returning to f0. The ABP Sender keeps
timing-out and retransmitting p0, between states s1 and s2. The ABP Receiver is “stuck” at state
r1, waiting to issue a deliver. The transitions corresponding to deliver are always enabled, but
never taken. The fairness assumptions on the deliver transitions rule out this kind of behavior.

A final fairness assumption that we may wish to impose is to declare the transition (sc0, send !, sc1)
of the Sending Client as strongly fair. Without this fairness condition, uninteresting behaviors such
as an infinite sequence of timeouts become possible. This fairness condition is needed for the “in-
finitely often send” property (liveness monitor 3), but not for the other two liveness properties
described above.

Several other transitions of the ABP Sender and Receiver are declared to be strongly fair, in
particular, all output transitions of these processes (see Figures 9 and 10). This is done to conform
to the default requirement that all output transitions of the deterministic protocol processes be
strongly fair. However, these extra fairness assumptions are not strictly necessary, as the assump-
tions listed above are sufficient in order to satisfy all three liveness properties discussed above.

4.6 ABP as a Solution to a Distributed Protocol Synthesis Problem

ABP can be seen as a solution to the problem of finding a protocol that guarantees reliable trans-
mission of messages over unreliable channels. Formally, the ABP model presented above has no
deadlocks, and satisfies the properties expressed by the monitors of Figures 4, 5, 6, 7 and 8.

Moreover, the ABP Sender and Receiver of Figures 9 and 10 are deterministic sequential pro-
cesses. Therefore, these two protocol processes can be seen as a solution to the Distributed Synthesis
Problem 2, where: there are k = 5 environment processes – Sending and Receiving Clients, Timer,
Forward and Backward Channels; there are m = 2 protocol processes – the ABP Sender and Re-
ceiver, with interfaces as shown in Figure 1; and there are n = 5 monitors – the safety and liveness
monitors presented above.

It is worth noting that the requirements imposed on deterministic sequential processes, such as
input-enabledness of input states, are crucial, in the sense that ignoring these requirements may
result in trivial solutions. For instance, the Blocking Sender shown in Figure 11, together with the
receiver of Figure 10, satisfy all requirements that are satisfied by the correct protocol. But clearly
this is not a solution we want, since the Blocking Sender achieves the liveness property “every send
must be eventually followed by a deliver” by simply refusing to accept send events, even though
send is in its input interface. A send can therefore never occur, and the above liveness property
is trivially satisfied. The same is true with the other liveness property. Requiring input states of
protocol processes to be input-enabled eliminates such pathological solutions.

ACM SIGACT News 18 March 2017 Vol. 48, No. 1

s0

a′1?

a′0?

timeout ?

Figure 11: Blocking Sender: it blocks the send event of the Sending Client by not having any
transition labeled with that event.

5 Automatic Protocol Completion

5.1 Solving the Distributed Protocol Completion Problem

The total number of completions of given incomplete processes may be finite, but in most realistic
examples it is huge. Even in the case of the relatively simple ABP example, there are more than 2
trillion candidate completions (see Section 5.3). Checking each of them for correctness can be done
automatically with a model checker. But even if model checking each candidate is fast, the sheer
number of candidates makes enumerating and checking all of them an impossible task.

An alternative to brute-force enumeration is proposed in [6]. As we shall see in §5.3, this al-
ternative method allows to complete examples like the ABP in less than a minute. The method
can be viewed as an instance of the so-called counterexample-guided inductive synthesis paradigm
(CEGIS) [49, 48]. At a high-level, the algorithm works by maintaining a set of completion con-
straints that any correct completion must satisfy. The algorithm then repeatedly chooses a can-
didate completion that satisfies these constraints. If no such completion exists, the algorithm
terminates and reports no solution. Otherwise, the chosen completion is checked against the cor-
rectness requirements using a model checker. If the chosen completion satisfies the requirements
then a solution is found and the algorithm terminates. Otherwise, the model checker returns a
counterexample showing one possible violation of the requirements. From this counterexample as
well as possibly additional knowledge, the synthesis algorithm extracts information used to create
more constraints on the set of correct completions, therefore pruning further the search space. As
can be seen, this method relies heavily on the counterexamples returned by the model checker,
hence the term counterexample-guided.

The approach is illustrated in Figure 12. The figure depicts the interplay of the two main
components of the algorithm: the Learner component which maintains the set of completion con-
straints and generates the candidate completions; and the Verifier component which checks those
candidates for correctness. The Learner also processes the counterexamples returned by the Verifier
when the candidate completion is incorrect. Apart from the candidate completions, other inputs
to the Verifier include the overall model (system architecture, environment processes, incomplete
protocol processes, monitors, etc.). Additional inputs to the Learner are the incomplete processes,
and possibly also the overall model.

The completion constraints maintained by the algorithm of [6] are propositional formulas over a
set of Boolean variables. There is one such variable for each candidate transition that can be added

ACM SIGACT News 19 March 2017 Vol. 48, No. 1

Learner Verifier

Incomplete processes
Environment processes

and Monitors

yes: candidate completion

no: no completion exists

no: counterexamples

yes: solution found

Figure 12: Block diagram of a completion algorithm that uses the CEGIS paradigm.

to each individual incomplete processes. The variable represents whether the transition can be
added or not. For example, if variables x2 and x7 represent some transitions t2 and t7, respectively,
then the formula ¬(x2 ∧ x7) states that no completion must add both t2 and t7.

It is beyond the scope of this paper to explain the algorithm of [6] in detail. But let us give a
flavor of how the algorithm works in one simple case. Suppose the algorithm currently explores the
candidate set of added transitions T = {t2, t7}. This means that we are attempting to add to the
incomplete protocol two transitions, namely t2, t7, and we want to check whether this addition is
correct. Suppose it is not: suppose the model checker detects a safety violation. This means that
the completed protocol has a run reaching an error state. But this implies that any set of added
transitions T ′ such that T ′ ⊇ T , will also be incorrect. Indeed, if a run is possible with a given set
of transitions, adding even more transitions cannot eliminate this run. Therefore, if an error state
is reachable with T , it will also be reachable with any T ′ ⊇ T . Thus, T ′ will have the same safety
violation as T . This reasoning implies that any completion that contains at least t2 and t7, and
possibly more transitions, is bound to be incorrect. Therefore, we add the constraint ¬(x2 ∧ x7) to
the set of completion constraints.

5.2 From Scenarios to Incomplete Processes

The incomplete protocol processes used in protocol completion do not necessarily have to be “man-
ually” designed. They can also be generated automatically from example scenarios, as proposed
in [6]. Let us briefly illustrate this in the context of the ABP example. For a more detailed
description of the scenario-based methodology we refer the reader to [6].

An example scenario for the ABP protocol is shown in Figure 13. This scenario is given in the
form of a message sequence chart (MSC). MSCs are a popular graphical notation for describing
distributed protocol interactions. MSCs are also an IEEE standard [1].

In the MSC shown in Figure 13, every vertical dotted line corresponds to the time-line of
a process in the system. This scenario involves six processes in total (process Timer does not
participate in this scenario). Each labeled arrow corresponds to a message sent by one process
to another. Although there is no quantitative time in this model, there is an implicit ordering of
events: the reception of a message happens after the transmission of the same message; also, within
a process, events happen later as we move further down the line. Thus, we can begin “reading”
the scenario as follows: first, the Sending Client sends message send to the ABP Sender; the ABP
Sender receives message send, and then sends message p0 to the Forward Channel; the Forward

ACM SIGACT News 20 March 2017 Vol. 48, No. 1

s0

s0

r0

r0

Sending Client ABP Sender Forward Channel ABP Receiver Backward ChannelReceiving Client

send

p0

p′0

deliver

a0

a′0

done

send

p1

p′1

deliver

a1

a′1

done

Figure 13: A scenario for the alternating-bit protocol.

ACM SIGACT News 21 March 2017 Vol. 48, No. 1

Channel receives p0 and then sends p′0 to the ABP Receiver; etc. It is worth noting that, although
the transmission of deliver by the ABP Receiver happens before its transmission of a0, there is
no guaranteed ordering between the receptions of these two messages, as these reception events
happen at different concurrent processes.

Another thing to be noted in the MSC of Figure 13 are the rectangles labeled s0 and r0, which
annotate the time-lines of ABP Sender and ABP Receiver. These correspond to states of these
processes as will be explained next.

Starting from a scenario such as the one of Figure 13, incomplete processes can be constructed
automatically for each of the processes participating in the scenario. For our purpose, which is
synthesis, we do not need to construct incomplete processes for the environment components, since
we already have complete processes for those (although we do need to check consistency between
the scenario and the environment processes, in order to catch possible mistakes in any of these
models). But we can use the scenario to automatically construct incomplete processes for the
protocol components, in our case, ABP Sender and ABP Receiver.

The basic idea of the transformation of scenarios to incomplete processes is the following. For
each component, we start at the top of each time-line, which is mapped by default to the initial
state of the corresponding process, unless a state label indicates otherwise. Then we move down
the time-line, and every time we encounter a new event, i.e., the transmission or reception of a
message m, we create a new state and a transition from the last state to that state labeled by m!
or m?, depending on whether m is transmitted or received. An exception is when we encounter a
state label in the time-line which has been encountered before. In that case, we do not create a new
state, but direct the transition to the corresponding previously encountered state (this is the case,
for instance, with state labels s0 and r0 on the time-lines of ABP Sender and Receiver processes in
Figure 13).

Executing the above algorithm on the time-lines of ABP Sender and ABP Receiver of the
scenario of Figure 13, results in the incomplete processes shown in Figures 14 and 15, respectively.
The differences between these processes and the corresponding “manually” built sender and receiver
of Figures 9 and 10 are explained in §5.3 that follows.

Note that the scenario of Figure 13 does not reveal all possible transitions in the system (let
alone all possible behaviors, which are both infinite in number and infinite in length). But the
scenario does cover all states of the protocol processes. This is important, since our completion
method adds transitions, but not states. Therefore, this completion method works as long as the
local states present in the input scenarios are sufficient (i.e., at least as many as a correct protocol
requires for each process).

5.3 Automatic Completion of the Alternating-Bit Protocol

In view of automatic completion, we now revisit the ABP example presented in Section 4. The
automatic completion algorithm described above has been implemented in a prototype tool written
in Python. This tool is an extended version of the tool used in [6] (we thank Christos Stergiou for
implementing these extensions). Using the completion tool, we synthesized the ABP Sender and
ABP Receiver processes automatically, starting from incomplete versions of these processes. These
incomplete versions were originally obtained from example scenarios as explained in Section 5.2.
Other incomplete versions were obtained by further removing transitions from the original incom-
plete processes, in order to test scalability of the tool as described below.

The overall system architecture is as shown in Figure 1 and as described in Section 4.1. The

ACM SIGACT News 22 March 2017 Vol. 48, No. 1

s0

s1 s2 s3

s4

s5s6s7

send ?
p0! a′0?

done !

send ?

p1!a′1?

done !

Figure 14: Incomplete process of ABP Sender.

r0 r1 r2

r3r4r5

p′0? deliver !

a0!

p′1?deliver !

a1!

Figure 15: Incomplete process of ABP Receiver.

environment processes given are the same as those depicted in Figures 2 and 3. The properties
that the final system must satisfy, in addition to absence of deadlocks, are captured by the safety
and liveness monitors of Figures 4, 5, 6, 7, and 8.

Incomplete Processes

The incomplete ABP Sender process provided as input to the automatic completion tool is shown in
Figure 14. As can be seen from the figure, the incomplete sender is like the sender shown in Figure 9,
but with several transitions missing (fair transitions are also not shown as these are automatically
added during completion – see §3.3). In particular, all self-loop transitions are missing from states
s0 and s4. Also, the self-loop transitions as well as the timeout transitions are missing from states
s2 and s6. Note that the incomplete sender has no timeout transitions at all. In total, 12 out of
20 transitions are missing in the incomplete sender compared to the sender of Figure 9. As it is
produced by the scenario of Figure 13, this incomplete sender captures only the “typical” behavior
of the protocol and does not specify how to deal with message loss and duplication. The logic to
deal with these must be discovered by the completion tool.

The incomplete ABP Receiver process provided as input to the automatic completion tool is
shown in Figure 15. It is like the receiver of Figure 10, but with 2 transitions missing, from states
r0 and r3, respectively. Like the incomplete sender, the incomplete receiver only represents the
typical behavior of the protocol.

Total Number of Completions in the ABP Example

Let us count the total number of completions in the case of the ABP example. First, let us count
the number of possible completions of the incomplete ABP Receiver of Figure 15. To begin with,
note that no transitions can be added in any of the states r1, r2, r4, r5. The reason is that these are
output states and every completed process must be deterministic. There are two remaining states,

ACM SIGACT News 23 March 2017 Vol. 48, No. 1

r0 and r3. We count the number of transitions that may be added to each of them, and multiply
the two numbers. First consider r0. There are two input events for the receiver, p′0 and p′1. State
r0 already has a transition with p′0: we cannot add an extra one with the same event, because
that would break determinism. For event p′1, we can add it on a transition leading to any of the 6
states of the receiver process; This makes 6 possible completions for state r0. The same calculation
holds for state r3. Therefore, the total number of possible completions of the incomplete receiver
is 6 · 6 = 36.

Let us now count the number of possible completions of the incomplete ABP Sender of Fig-
ure 14. States s1, s3, s5, s7 of the sender are output states, and thus cannot be completed due to
determinism. There are 4 possible input events to the sender: send, timeout, a′0, and a′1. For
each event missing from a state, there are 8 completions. Thus, there are 8 · 8 · 8 = 512 possible
completions for state s0, since s0 is missing three input events. The same calculation holds for
states s2, s4, s6. Therefore, the total number of completions of the sender is 5124.

Multiplying the total number of completions of the sender with the total number of completions
of the receiver, we get the total number of completions in the ABP example, which is 5124 · 36,
i.e., about 2.5 trillion completions. As mentioned above, each candidate completion needs to be
model-checked for correctness. This example is sufficiently small for a model checker, so verification
of each candidate does not take a lot of time. But even with 1 millisecond per candidate, it would
take more than 78 years to verify all of them. As these numbers show, brute-force enumeration is
not an option. Instead, the algorithm described in §5.1 is much more efficient, as we show next.

Automatic Completion of the ABP Example

We provide as input to our automatic synthesis tool: (1) the environment processes Forward Chan-
nel, Backward Channel, Sending Client, Receiving Client, and Timer, shown in Figures 2 and 3; (2)
the incomplete sender and receiver processes shown in Figures 14 and 15; and (3) the safety and
liveness monitors shown in Figures 4, 5, 6, 7, and 8. We ask the tool to solve the DPC problem
(Problem 3), i.e., to synthesize deterministic sequential process completions for the ABP Sender
and Receiver, such that the overall system is deadlock-free and satisfies the safety and liveness
properties expressed by the monitors.

The tool runs for about 19 secs (on a T430s Lenovo laptop) and finds a solution consisting of 2
transitions added to the incomplete ABP Receiver and 12 transitions added to the incomplete ABP
Sender. Completing the ABP Receiver with the 2 added transitions we find a process identical to
the one of Figure 10. Completing the ABP Sender with the 12 added transitions we find the process
shown in Figure 16. The added transitions are drawn with dashed arrows. As can be seen, the tool
adds 3 transitions in each of the 4 input states of the sender process.

There are several similarities but also several differences between the automatically synthesized
sender of Figure 16 and the manually built sender of Figure 9. On the similarities: state s0 is
completed in exactly the same way as in the manual design; also, the timeout transitions are added
in exactly the same manner; finally, some (but not all) of the transitions labeled a′0, a

′
1 are added

to states s2, s4, s6 in exactly the same manner as in the manual design. But there are also several
differences: the transitions labeled send are added differently at states s2 and s6; also the transition
labeled a′1 is added differently at state s4.

One might wonder whether some of these transitions (in particular those that differ in the
automated and manual versions) really matter. For instance, are all the added transitions really
necessary, or can some of them be removed without affecting the correctness of the protocol? Given

ACM SIGACT News 24 March 2017 Vol. 48, No. 1

s0

s1 s2 s3

s4

s5s6s7

send ?

p0!

a′0?

done !

send ?p1!

a′1?

done !

a′0?

a′1?

timeout ?

a′1?

send ?

timeout ?

a′0?

a′1?

timeout ?

a′0?

send ?

timeout ?

Figure 16: ABP Sender automatically synthesized by completing the sender of Figure 14.

our requirement that input states of completed protocol processes must be input-enabled, none of
the added transitions can be completely removed. However, this does not imply that the exact
placement of these transitions (i.e., their target states) matters. To check if it does, we use a
feature of our tool which allows to identify dead transitions. These are local transitions (i.e., of
some component process) which are never exercised in the global model, i.e., which never participate
in any synchronized transition of the global state space.

We ask the tool to find dead transitions giving it as input the completed ABP model. The tool
reports the following dead transitions (we only list dead transitions of the system processes, and
not of the monitors):

• No dead transitions in Timer, Forward Channel, Backward Channel, ABP Receiver, and
Receiving Client.

• Dead transition in Sending Client: sc0
done?→ sc0.

• Dead transitions in ABP Sender: s0
a′0?→ s0, s2

send?→ s1, s4
a′1?→ s5, s6

send?→ s5.

Armed with the above piece of information, we manually reset the 4 dead transitions of the
ABP Sender to be self-loops in the incomplete sender process. Then we re-execute the synthesis
tool, but this time asking it to find all possible solutions. After about 19 secs, the tool reports 4
solutions. In all 4 solutions the ABP Receiver is identical to the manually built receiver (Figure 10).
All 4 solutions therefore correspond to 4 different variants of the ABP Sender. These variants are
shown in Figure 17. They are identical, except for the transitions drawn with dashed lines.

As can be seen the 4 variants are the 4 possible combinations of placements of transitions
labeled a′1 and a′0, respectively from states s2 and s6. These labels correspond to unexpected
acknowledgments at those states. The “natural” solution is to ignore those acknowledgments, as is
done with the self-loops of the fourth variant. However, it is also possible to return to the previous
state (s1 or s5), as done in the other three variants. This then leads to retransmit the last message.
It may be redundant and “wasteful” to retransmit when a wrong acknowledgment is received, but
it is not incorrect.

As already stated, these 4 solutions were obtained by fixing the “don’t care” dead transitions
to be self-loops. These transitions can be set to lead anywhere, however, and we still get a valid

ACM SIGACT News 25 March 2017 Vol. 48, No. 1

s0

s1 s2 s3

s4

s5s6s7

a′1?

a′0?

a′0?

send ?

a′1?

send ?

a′1?

timeout ?

send ?

p0!

timeout ?

a′0?

done !

a′0?

timeout ?

send ?p1!

timeout ?

a′1?

done !

(a) Variant 1

s0

s1 s2 s3

s4

s5s6s7

a′1?

a′0?

a′0?

send ?

a′1?

send ?

a′1?

timeout ?

send ?

p0!

timeout ?

a′0?

done !

a′0?

timeout ?

send ?p1!

timeout ?

a′1?

done !

(b) Variant 2

s0

s1 s2 s3

s4

s5s6s7

a′1?

a′0?

a′0?

send ?

a′1?

send ?

a′1?

timeout ?

send ?

p0!

timeout ?

a′0?

done !

a′0?

timeout ?

send ?p1!

timeout ?

a′1?

done !

(c) Variant 3

s0

s1 s2 s3

s4

s5s6s7

a′1?

a′0?

a′0?

send ?

a′1?

send ?

a′1?

timeout ?

send ?

p0!

timeout ?

a′0?

done !

a′0?

timeout ?

send ?p1!

timeout ?

a′1?

done !

(d) Variant 4

Figure 17: Four variants of ABP Sender automatically synthesized by the completion tool.

ACM SIGACT News 26 March 2017 Vol. 48, No. 1

r0 r1 r2

r3r4r5

p′0?

p′1?

deliver !

a0!p′0?

p′1?

deliver !a1!

Figure 18: Automatically synthesized ABP Receiver during a completion experiment.

solution. Since each of the 4 dead transitions may lead to any of the 8 possible target states, there
are in total 4 ·84 = 16384 correct completions of the ABP example. It takes the tool about 88 mins
to generate all 16384 solutions – see Table 1 and related discussion in the sequel.

Impossibility and Other Results

Apart from automatically completing the ABP example, we have also used the synthesis tool to
obtain other interesting results, described next.

No solution exists if channels are unfair: We might wonder what happens if we remove the
fairness constraints from the two channels. It takes about 18 secs for the tool to report that no
correct completions can be found in that case. This impossibility result is to be expected since
it is impossible to transmit reliably over an unreliable channel without assuming some kind of
fairness from that channel. What is interesting here is that this impossibility result is obtained
automatically.

No solution exists if deliver is not strongly fair: What if we remove the strong fairness
assumption from the deliver transition of ABP Receiver? It takes the tool about 18 secs to report
no solutions. This impossibility result is also to be expected, in view of the comments in §4.5.

On the strong fairness of the send transition of Sending Client: As already stated in
§4.5, the strong fairness condition on the send transition of Sending Client is needed only for the
property of liveness monitor 3. What if we tried completion without this fairness assumption and
without requiring this liveness property? Could this result in a different set of solutions? In fact,
no. Performing this experiment we find that the completion tool returns the same 4 solutions as
those shown in Figure 17.

A surprising ABP Receiver: One of the benefits of synthesis is that it offers even more surprises
than verification. While performing one of the (too many to list exhaustively) experiments that we
ran, we were surprised to see the tool return as a solution the ABP Receiver process of Figure 18.
This process is identical to the one in Figure 10, except for the outgoing transition from state r4. In
Figure 18, this transition leads to state r0 instead of r5. (This solution was returned when starting
with an incomplete receiver having fewer transitions than the one of Figure 15, in particular, missing
the deliver transition from state r4.)

As it turns out, the receiver of Figure 18, together with any of the senders of Figure 17, is a
correct solution to the ABP synthesis problem. This may appear surprising at first, as the receiver

ACM SIGACT News 27 March 2017 Vol. 48, No. 1

s0

a0'?
a1'?

timeout?
s4

send?

a1'?
send?

s3timeout?

s1a0'?

p0!

s2done!

a0'?
timeout?

s5

a1'?

send?

s6p1!

send?

a0'?

timeout?

s7

a1'?

done!

c0

a0?
a1? c2

a1?

c1

a0?

a1'!

a0?
a1?
a1'!

a0'! a0?
a1?
a0'!

c0

p0?
p1? c2p1?

c1

p0?

p1'!

p0?
p1?
p1'!

p0'! p0?
p1?
p0'!

file:///C:/cygwin64/home/stavros/synthesis/scenarios/tool/examples/abp/...

4 of 4 8/31/2016 5:46 PM

Figure 19: Automatically synthesized ABP Sender during a completion experiment.

of Figure 18 omits to send the acknowledgment message a1 after it has sent deliver from state
r4. But this omission simply results in the sender having to retransmit. Eventually, the receiver
receives p′1, moves from state r0 to r5, and sends the acknowledgment message a1. As can be seen,
this unorthodox solution is strictly speaking correct, even though it wastefully forces the sender to
perform unnecessary retransmissions.

A surprising ABP Sender: Another solution that we found automatically and which surprised
us at first was one where the ABP Sender was as shown in Figure 19 (this figure has been generated
automatically by the tool using the Graphviz package – http://www.graphviz.org/). As can be
seen in the figure, this sender does not immediately transmit p0 after receiving send and moving
to state s4. Instead, it relies on timeout to move from s4 to s3, and then returns to s4 having
transmitted p0. After that, its behavior is similar to the senders already presented earlier. Although
unorthodox, this solution satisfies the requirements.

How many transitions can be left unspecified?

Ideally we should be able to synthesize the ABP protocol from scratch, by only specifying the
number of states of the ABP Sender and Receiver processes, i.e., by providing incomplete processes
with no transitions at all, and asking the completion tool to find the transitions. Our tool is not
currently capable of that. However, the set of experiments that we report on in the sequel are
encouraging, and lead us to believe that the goal of synthesizing ABP from scratch will soon be
within reach.

We performed the following two sets of experiments:

1. Starting with the manually constructed ABP Sender of Figure 9, we removed transitions one
by one, until we reached the incomplete sender of Figure 14. In each experiment we asked
the completion tool to synthesize all possible correct completions. The results are shown in
Table 1.

2. Starting with the incomplete sender of Figure 14, we continued removing transitions one by
one, and in this case asking the tool to compute one solution each time. The results are
shown in Table 2.

In all cases we used the incomplete ABP Receiver of Figure 15. In each experiment we ran the
completion tool and measured its performance. Performance was measured in terms of execution

ACM SIGACT News 28 March 2017 Vol. 48, No. 1

http://www.graphviz.org/

time (on a T430s Lenovo laptop), and also in terms of number of iterations. Each iteration cor-
responds to one candidate completion tried out, i.e., it includes one call to the model checker to
check correctness of that candidate.

As can be observed from Table 1, it is generally the case that the more transitions we remove, the
more iterations (and time) it takes to find the solutions. However, this is not always the case, e.g.,
see the differences between rows 2 and 3, and also between rows 6 and 7. Also note that this table
represents only one set of experiments corresponding to one of the many possible orders of removing
transitions. Another order may yield different results, since not only the number of transitions
removed but also the exact set of these transitions can influence performance significantly.

In Table 2 we start from the incomplete sender of Figure 14, which is already missing 12
transitions compared to the manual solution. We then further remove transitions as shown in
the table. Note that removing these extra transitions results in some states of the sender process
becoming deadlocks or even completely disconnected. These states can be completed to become
either input states or output states. To help the tool, we specify the choice for each state as
an input, i.e., we specify that states s0, s2, s4, s6 are input states, and that states s1, s3, s5, s7 are
output states.

As with the experiments in Table 1, it is generally the case that the more transitions we remove
the longer it takes to find a solution. But this is again not always true. For instance, removing the
2 transitions shown in row 3 of the table requires more time (and iterations) to find a solution than
removing the 3 transitions shown in row 4. But also note that the results of a single experiment
can vary greatly, depending on the order in which transitions are explored in the algorithm. This
order depends on a number of factors, such as on the solutions returned by the SAT solver (which
is an external library). We can run the same experiment several times and obtain different results
using the -seed option of the tool which controls the random seed. Using different random seeds
yields, for example, a different solution for the experiment of row 2 is obtained in 475 iterations
(instead of 168 shown in the table), and a different solution for the experiment of row 3 is obtained
in 135 iterations (instead of 1077 shown in the table).

The last experiment shown in Table 2 did not terminate after 4 hours, and was then aborted.
Note that in this last experiment the sender process provided to the tool has no transitions left, as
all 8 transitions of the incomplete sender of Figure 14 have been removed. Being able to complete
this last experiment would amount to synthesizing the ABP Sender from scratch, with the proviso
that input-output states are also specified as an input.

5.4 Alternative Approaches

We describe two related approaches that can be used to solve the protocol completion problem.

Bounded Synthesis, Lazy Synthesis, and Template-Based Synthesis

Since distributed protocol synthesis is undecidable, the bounded synthesis problem asks, given a
number k, do there exist protocol processes, each as a finite-state machine with at most k states, that
satisfy the requirements of the desired solution [21]. The set of possible protocol processes is now
bounded and thus bounded synthesis is decidable. The solution strategy in [21] is purely symbolic
and can be used to reduce the distributed protocol completion problem that we have defined to
Boolean satisfiability. The first step is a straightforward encoding of the desired transition functions
of the protocol processes as Boolean variables. The problem of checking whether the product of

ACM SIGACT News 29 March 2017 Vol. 48, No. 1

Transitions removed from the complete sender of Figure 9 Solutions Iterations Time

s6
timeout?→ s5 1 12 9 secs

s6
timeout?→ s5, s4

timeout?→ s4 1 19 10 secs

s2
timeout?→ s1, s6

timeout?→ s5, s4
timeout?→ s4 1 18 11 secs

s0
timeout?→ s0, s2

timeout?→ s1, s6
timeout?→ s5, s4

timeout?→ s4 1 25 13 secs

s0
timeout?→ s0, s2

timeout?→ s1, s6
timeout?→ s5, s4

timeout?→ s4,

s0
a′1?→ s0 1 43 14 secs

s0
timeout?→ s0, s2

timeout?→ s1, s6
timeout?→ s5, s4

timeout?→ s4,

s0
a′1?→ s0, s4

a′0?→ s4 1 56 16 secs

s0
timeout?→ s0, s2

timeout?→ s1, s6
timeout?→ s5, s4

timeout?→ s4,

s0
a′1?→ s0, s4

a′0?→ s4, s2
a′1?→ s2 2 46 16 secs

s0
timeout?→ s0, s2

timeout?→ s1, s6
timeout?→ s5, s4

timeout?→ s4,

s0
a′1?→ s0, s4

a′0?→ s4, s2
a′1?→ s2, s6

a′0?→ s6 4 72 19 secs

s0
timeout?→ s0, s2

timeout?→ s1, s6
timeout?→ s5, s4

timeout?→ s4,

s0
a′1?→ s0, s4

a′0?→ s4, s2
a′1?→ s2, s6

a′0?→ s6, s0
a′0?→ s0 32 103 27 secs

s0
timeout?→ s0, s2

timeout?→ s1, s6
timeout?→ s5, s4

timeout?→ s4,

s0
a′1?→ s0, s4

a′0?→ s4, s2
a′1?→ s2, s6

a′0?→ s6, s0
a′0?→ s0, s2

send?→ s2 256 320 1 min 25 secs

s0
timeout?→ s0, s2

timeout?→ s1, s6
timeout?→ s5, s4

timeout?→ s4,

s0
a′1?→ s0, s4

a′0?→ s4, s2
a′1?→ s2, s6

a′0?→ s6, s0
a′0?→ s0, s2

send?→ s2,

s4
a′1?→ s4 2048 2133 9 mins 20 secs

s0
timeout?→ s0, s2

timeout?→ s1, s6
timeout?→ s5, s4

timeout?→ s4,

s0
a′1?→ s0, s4

a′0?→ s4, s2
a′1?→ s2, s6

a′0?→ s6, s0
a′0?→ s0, s2

send?→ s2,

s4
a′1?→ s4, s6

send?→ s6 16384 16471 88 mins 19 secs

Table 1: Some performance experiments with our completion tool: in each experiment in this table
all correct completions have been synthesized – their number is reported in the column “Solutions”.

ACM SIGACT News 30 March 2017 Vol. 48, No. 1

Further transitions removed from the incomplete sender of Figure 14 Iterations Time

None 65 19 secs

s0
send?→ s1 168 24 secs

s0
send?→ s1, s2

a′0?→ s3 1077 2 mins 4 secs

s0
send?→ s1, s2

a′0?→ s3, s4
send?→ s5 447 50 secs

s0
send?→ s1, s2

a′0?→ s3, s4
send?→ s5, s6

a′1?→ s7 4991 11 mins 36 secs

s0
send?→ s1, s2

a′0?→ s3, s4
send?→ s5, s6

a′1?→ s7, s1
p0!→ s2 5272 12 mins 22 secs

s0
send?→ s1, s2

a′0?→ s3, s4
send?→ s5, s6

a′1?→ s7, s1
p0!→ s2, s3

done!→ s4 4056 9 mins 20 secs

s0
send?→ s1, s2

a′0?→ s3, s4
send?→ s5, s6

a′1?→ s7, s1
p0!→ s2, s3

done!→ s4,

s5
p1!→ s6 9001 21 mins 44 secs

s0
send?→ s1, s2

a′0?→ s3, s4
send?→ s5, s6

a′1?→ s7, s1
p0!→ s2, s3

done!→ s4,

s5
p1!→ s6, s7

done!→ s0 aborted after 4 hours

Table 2: More performance experiments with our completion tool: in each experiment the first
correct completion found has been returned.

the resulting processes satisfies all the safety and liveness monitors is then reduced to finding a
satisfying assignment for a set of constraints over these variables. This relies on interpreting the
monitors as universal co-Büchi automata and computing a bound on the lengths of runs that need
to be explored to check acceptance.

Bounded synthesis is combined with lazy synthesis in [19]. Lazy synthesis uses a solve-check-
refine loop which is similar to the approach described in §5.1. The main difference in our approach
is the use of scenarios which are pre-processed into incomplete protocols. In contrast, the lazy
synthesis algorithm in [19] works solely on the basis of an LTL specification and a bound on the
number of states k, while it also contains an outer loop which increases k until a solution is found.

Completion of incomplete protocols is also similar to template-based synthesis [20]. The main
difference is that in protocol completion transitions are added, whereas in template-based synthesis
transitions are removed during the synthesis process.

Genetic Programming

An interesting alternative to distributed protocol synthesis relies on genetic programming [28, 29]:
given an initial protocol template specified in a protocol description language and correctness
requirements, if the model checker finds that the protocol does not satisfy the requirements, the tool
tries multiple mutations of the abstract syntax tree of the protocol description, ranks the resulting
versions by estimating how close they are to satisfying the requirements using state-space analysis,
and iterates by probabilistically selecting a variant with weights proportional to ranks. The success
of such a technique crucially depends on finding the suitable ranking function. This technique has
been used to generate multiple variants of shared memory mutual exclusion algorithms and the
leader election protocol [28, 29]. We believe that this approach is complementary to the one we
have described and combining the two is a promising direction for future research.

ACM SIGACT News 31 March 2017 Vol. 48, No. 1

6 Conclusions

We have described how current tools for automated analysis and constraint solving can be effectively
used to assist a programmer in the design of distributed protocols. The main insights from our
experience are summarized below:

Benefits of Protocol Completion The goal of formal verification is to produce a mathemati-
cal proof that an implementation meets its correctness specification. Model checking realizes this
goal only partially but effectively: it checks only the requirements expressible in temporal logic
against a finite-state abstraction of the protocol, but is supported by algorithmic tools that pro-
duce counterexamples that are useful for finding bugs in real-world protocols. The relationship of
protocol completion to protocol synthesis can be potentially analogous to the one of model checking
to verification: while protocol completion does not fulfill the original synthesis vision of deriving
protocols automatically from high-level specifications, it can be useful as a design tool by automat-
ically inferring missing cases in a partially designed protocol. Our case study of the ABP protocol
illustrates the potential as the completion tool automatically infers how to cope with message losses
and message duplications and synthesizes variants of the protocol that also meet the requirements.

Synthesis as Integration Classical synthesis aims to raise the level of abstraction, say, from
imperative code to declarative logic formulas, and the goal of the synthesizer is to derive the low-
level implementation from the high-level specification. In the more modern view of synthesis, a
programmer interacts with the synthesizer by expressing the desired functionality via different syn-
thesis artifacts. Such artifacts can include programs (that may not yet be complete), declarative
specifications of high-level requirements, positive and negative examples of desired behaviors, and
optimization criteria for selecting among alternative implementations. This diversity is aimed at
allowing a programmer to express her insights through a variety of modes, leading to a poten-
tially more intuitive and less error-prone way of programming. The synthesis tool integrates these
different views about the structure and functionality of the system into a unified, concrete imple-
mentation using computational techniques such as decision procedures for constraint-satisfaction
problems, iterative schemes for abstraction and refinement, and data-driven learning. The protocol
completion problem we have described is an instance of this modern view of synthesis: the require-
ments expressed by the monitors, the protocol template, and the scenarios describing some of the
transitions are all different artifacts that are to be integrated into a unified implementation by the
synthesis tool.

Importance of Formal Models Dating back to models such as CSP [24] and CCS [37], there
is a rich literature in concurrency theory focused on variations and properties of formal models for
distributed protocols. Model checkers however typically do not emphasize the nuances of formal
models, and are primarily focused on the state-transition system underlying a protocol. As we have
explained, the modeling assumptions, for instance, regarding fairness and non-blocking outputs, are
crucial for automated synthesis to yield meaningful solutions. Thus, automated synthesis requires
an integration of ideas from automated tools and concurrency theory.

Learning and Verification The CEGIS-based solution to protocol completion consists of in-
teracting learning and verification phases where the learner proposes a candidate completion and

ACM SIGACT News 32 March 2017 Vol. 48, No. 1

the verifier checks the proposed completion for correctness and returns counterexamples if the cor-
rectness check fails. This is an instance of active learning, and such an architecture that integrates
learning techniques with verification technology can have many potential applications in improving
programmer productivity.

Future Work

We conclude by discussing two directions for future research:

Protocols as Extended FSMs In this paper, we modeled each protocol process as a finite-state
machine. A more practical approach is to model a process as an extended finite-state machine, that
is, a state-machine with variables (such as queues and counters) that the transitions may test and
update. Such a protocol is an infinite-state system, but an effective heuristic for verification is
to bound the values of all state variables (for example, the size of each queue) and then to apply
a model checker. Inferring missing transitions for automatic protocol completion in this setting
requires a systematic generation of expressions for the guards and updates for the variables. We
have some preliminary work on this problem with application to cache coherence protocols [55, 7]
(see also the approach based on genetic programming [28, 29]), but new computational techniques
will be needed for applicability of this approach.

Battling the Exponential Search As noted earlier, solving the protocol completion problem
requires battling two nested exponential search spaces: the number of possible completions of the
given template and exploration of the state-space of each completion for violation of correctness
requirements. While we have many techniques available for battling the state-space explosion, less is
known for searching efficiently through the space of possible completions. Possible search strategies
include enumeration with pruning, symbolic encoding, and stochastic walk over the graph of all
possible completions [3]. A potential catalyst for advancing the state-of-the-art in computational
solvers for this problem is the standardization of the related problem of Syntax-Guided Synthesis
with a repository of benchmarks, prototype solvers, and an annual competition of solvers (see
www.sygus.org).

Acknowledgments

This work was partially supported by the US National Science Foundation (awards 1329759,
1138996, and 1139138). We would like to thank Jennifer Welch and Bernd Finkbeiner for their
helpful comments. We would also like to thank Milo Martin, Mukund Raghothaman, Christos
Stergiou, and Abhishek Udupa, our co-authors of earlier work [6] upon which this paper is based.
Special thanks go to Christos Stergiou for his invaluable help with modeling the alternating bit
protocol and using the distributed protocol completion tool, as well as for implementing additional
functionality in that tool.

References

[1] ITU Telecommunication Standardization Sector: ITU-R recommendation Z.120, Message Se-
quence Charts (MSC ’96), May 1996.

ACM SIGACT News 33 March 2017 Vol. 48, No. 1

[2] M. Abadi and L. Lamport. Composing specifications. ACM TOPLAS, 15(1):73–132, 1993.

[3] R. Alur, R. Bod́ık, G. Juniwal, M.M.K. Martin, M. Raghothaman, S.A. Seshia, R. Singh,
A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In Formal Methods in
Computer-Aided Design, FMCAD, pages 1–17, 2013.

[4] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235,
1994.

[5] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System Design, 15(1):7–48,
1999.

[6] R. Alur, M. Martin, M. Raghothaman, C. Stergiou, S. Tripakis, and A. Udupa. Synthesizing
finite-state protocols from scenarios and requirements. In Haifa Verification Conference, LNCS
8855, pages 75–91. Springer, 2014. Extended version at CORR, abs/1402.7150.

[7] R. Alur, M. Raghothaman, C. Stergiou, S. Tripakis, and A. Udupa. Automatic completion
of distributed protocols with symmetry. In 27th International Conference on Computer Aided
Verification (CAV), LNCS 9207, pages 395–412, 2015.

[8] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Weiglhofer. Automatic
hardware synthesis from specifications: a case study. In Proc. DATE, pages 1188–1193, 2007.

[9] C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer, 2nd
edition, 2010.

[10] A. Church. Logic, arithmetics, and automata. In Proc. Int. Congress of Mathematicians, pages
23–35, 1963.

[11] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new symbolic model
checker. Software Tools for Technology Transfer, 2(4):410–425, 2000.

[12] E.M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L. McMillan, and L.A. Ness.
Verification of the Futurebus+ cache coherence protocol. Formal Methods in System Design,
6:217–232, 1995.

[13] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2000.

[14] L. de Alfaro and T. Henzinger. Interface automata. In Foundations of Software Engineering
(FSE). ACM Press, 2001.

[15] L. de Moura and N. Bjørner. Satisfiability Modulo Theories: introduction and applications.
Commun. ACM, 54(9):69–77, 2011.

[16] D.L. Dill. The Murphi verification system. In Computer Aided Verification, 8th International
Conference (CAV), LNCS 1102, pages 390–393, 1996.

[17] R. Ehlers, S. Lafortune, S. Tripakis, and M. Vardi. Supervisory Control and Reactive Synthesis:
A Comparative Introduction. Discrete Event Dynamic Systems, pages 1–52, 2016.

ACM SIGACT News 34 March 2017 Vol. 48, No. 1

[18] B. Finkbeiner. Synthesis of reactive systems. In Dependable Software Systems Engineering,
volume 45 of NATO Science for Peace and Security Series, D: Information and Communication
Security, pages 72–98. IOS Press, 2016.

[19] B. Finkbeiner and S. Jacobs. Lazy synthesis. In Proceedings of the 13th International Confer-
ence on Verification, Model Checking, and Abstract Interpretation, VMCAI’12, pages 219–234.
Springer, 2012.

[20] B. Finkbeiner and H.-J. Peter. Template-based controller synthesis for timed systems. In
Proceedings of the 18th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’12, pages 392–406, 2012.

[21] B. Finkbeiner and S. Schewe. Bounded synthesis. International Journal on Software Tools for
Technology Transfer, 15(5-6):519–539, 2013.

[22] R. Gawlick, R. Segala, J. Sogaard-Andersen, and N.A. Lynch. Liveness in timed and untimed
systems. In Automata, Languages, and Programming, Proceedings of the 21st ICALP, LNCS
820, pages 166–177. Springer-Verlag, 1994.

[23] A. Groce, K. Havelund, G. J. Holzmann, R. Joshi, and R. Xu. Establishing flight software
reliability: testing, model checking, constraint-solving, monitoring and learning. Ann. Math.
Artif. Intell., 70(4):315–349, 2014.

[24] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[25] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.

[26] G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,
2004.

[27] G. Kahn. The semantics of simple language for parallel programming. In IFIP Congress, pages
471–475, 1974.

[28] G. Katz and D.A. Peled. Model checking-based genetic programming with an application to
mutual exclusion. In Tools and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, LNCS 4963, pages 141–156, 2008.

[29] G. Katz and D.A. Peled. Synthesizing solutions to the leader election problem using model
checking and genetic programming. In Hardware and Software: Verification and Testing - 5th
International Haifa Verification Conference, pages 117–132, 2009.

[30] O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. FOCS, pages 531–540,
2005.

[31] H. Lamouchi and J. Thistle. Effective control synthesis for DES under partial observations.
In 39th IEEE Conference on Decision and Control, pages 22–28, 2000.

[32] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley, 2002.

[33] L. Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, 2006.

ACM SIGACT News 35 March 2017 Vol. 48, No. 1

[34] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75(9):1235–1245, 1987.

[35] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[36] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specifica-
tion. Springer-Verlag, New York, 1991.

[37] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[38] G.L. Peterson and J.H. Reif. Multiple-person alternation. In 20th IEEE Symp. Found. of
Comp. Sci., 1979.

[39] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of the 16th
ACM Symposium on Principles of Programming Languages, 1989.

[40] A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In Proceedings
of the 31th IEEE Symposium on Foundations of Computer Science, pages 746–757, 1990.

[41] V. Preoteasa and S. Tripakis. Towards Compositional Feedback in Non-Deterministic and
Non-Input-Receptive Systems. In 31st Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), 2016.

[42] A. Puri, S. Tripakis, and P. Varaiya. Problems and examples of decentralized observation and
control for discrete event systems. In Synthesis and Control of Discrete Event Systems, pages
37–56. Springer, 2002.

[43] P. Ramadge and W. Wonham. Supervisory control of a class of discrete event processes. SIAM
J. Control Optim., 25(1), January 1987.

[44] P. Ramadge and W. Wonham. The control of discrete event systems. Proceedings of the IEEE,
January 1989.

[45] K. Rudie and J.C. Willems. The computational complexity of decentralized discrete-event
control problems. IEEE Transactions on Automatic Control, 40(7), 1995.

[46] K. Rudie and W. Wonham. Think globally, act locally: Decentralized supervisory control.
IEEE Transactions on Automatic Control, 37, 1992.

[47] S.A. Seshia. Combining induction, deduction, and structure for verification and synthesis.
Proceedings of the IEEE, 103(11):2036–2051, 2015.

[48] A. Solar-Lezama. Program sketching. Software Tools for Technology Transfer, 15(5-6):475–495,
2013.

[49] A. Solar-Lezama, R.M. Rabbah, R. Bod́ık, and K. Ebcioglu. Programming by sketching for
bit-streaming programs. In Proc. 2005 ACM Conference on Programming Language Design
and Implementation, pages 281–294, 2005.

[50] J.G. Thistle. Supervisory control of discrete event systems. Mathl. Comput. Modelling,
23(11/12):25–53, 1996.

ACM SIGACT News 36 March 2017 Vol. 48, No. 1

[51] J.G. Thistle. Undecidability in decentralized supervision. Systems & Control Letters,
54(5):503–509, 2005.

[52] S. Tripakis. Undecidable Problems of Decentralized Observation and Control. In 40th IEEE
Conference on Decision and Control (CDC’01), pages 4104–4109. IEEE Computer Society,
December 2001.

[53] S. Tripakis. Undecidable Problems of Decentralized Observation and Control on Regular
Languages. Information Processing Letters, 90(1):21–28, April 2004.

[54] S. Tripakis, B. Lickly, T. A. Henzinger, and E. A. Lee. A theory of synchronous relational
interfaces. ACM Transactions on Programming Languages and Systems (TOPLAS), 33(4),
July 2011.

[55] A. Udupa, A. Raghavan, J.V. Deshmukh, S. Mador-Haim, M.M.K. Martin, and R. Alur.
TRANSIT: specifying protocols with concolic snippets. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 287–296, 2013.

[56] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.
In Proceedings of the First IEEE Symposium on Logic in Computer Science, pages 332–344,
1986.

ACM SIGACT News 37 March 2017 Vol. 48, No. 1

SIROCCO 2016 Review

Lewis Tseng
Toyota InfoTechnology Center USA

ltseng@us.toyota-itc.com

The 23rd International Colloquium on Structural Information and Communication Complexity
(SIROCCO ’16) was held on July 19-21, 2016, in Helsinki, Finland. The conference took place at
the Aalto University School of Business, which is located in a lovely neighborhood near the city
center. The venue is one block away from the Temppeliaukio Church, a magnificent church built
directly into solid rock. I was lucky enough to enjoy a beautiful sacred music performance at the
church on my first day in Helsinki, which helped me get over my jet lag. If you need some refreshing
experiences while visiting Helsinki, I would definitely recommend the Temppeliaukio Church.

Figure 1: Music performance at
the Temppeliaukio Church. Figure 2: Panoramic view of the Temppeliaukio Church.

SIROCCO ’16 had one keynote lecture, one award lecture, and four invited talks. These talks
were all very exciting and insightful. I will review the key discussion and insights from these talks.
I will then review some paper presentations that I found interesting. Finally, I will summarize
the key points from the business meeting – we held the meeting on a boat this year! (Please find
pictures toward the end of the article.)

The conference website provides the slide deck of each invited talk/keynote/lecture and the
pre-proceeding version of each accepted paper. The files are available at:

ACM SIGACT News 38 March 2017 Vol. 48, No. 1

http://sirocco2016.hiit.fi/programme/ .

Keynote Lecture:
“A Principled Way of Designing Efficient Distributed Protocols” by Yoram Moses

Yoram Moses discussed research topics and results in the intersection of knowledge reasoning
and distributed computing. Yoram began the keynote with an observation: even though there are
many models of distributed computing proposed in the literature, there is no unifying “Turing
machine” model for distributed systems. Yoram argued that it is because very few results apply
to all distributed systems; therefore, he is motivated to obtaining general results – “a principled
way”. Yoram’s core approach is studying the role of knowledge in distributed system.

Yoram discussed a detailed motivating example – the Computing The Maximum (CTM) prob-
lem, which is related to electing a single leader (with the maximum ID). In the CTM problem,
each agent in a chain network is given an input value, and in the end, the agents need to decide (or
output) the maximum input. He showed that for CTM, collecting all values at each agent is neither
necessary nor sufficient. The key to CTM is the knowledge of the maximum value – knowing the
maximum value equals some value c is necessary and sufficient to output c. Yoram characterized
this observation using a general principle: The Knowledge of Preconditions (KoP) Principle.

Definition 1. (KoP Principle)
If ϕ must be true when agent i performs α, then Kiϕ must be true when agent i performs α.

Here, Kiϕ is the notation in reasoning knowledge. Intuitively, it means that agent i knows that
ϕ holds in all possible scenarios (or possible worlds). In the CTM example, agent i must know that
c is the maximum value when i outputs c.

With this principle, Yoram argued that the core for all standard specifications is “knowledge is
a prerequisite for action” – this would be the fundamental theorem of distributed systems.

Then Yoram used the well-known indistinguishability examples to demonstrate how the notion
of knowledge can be defined for distributed systems. With the definition, Yoram presented the
proof of the KoP Principle using pictures. Interested readers can read the full proof in [5]. After
the lively picture-based proof, Yoram explained how to apply the KoP Principle to problems in
distributed systems, specifically an unbeatable distributed consensus protocol (in terms of time
complexity) and an all-case optimal and fair majority consensus protocol.

Yoram concluded the keynote by emphasizing the importance of knowledge: (i) knowledge is
core to distributed systems, (ii) knowledge-based analysis helps us design more efficient protocols
and reveals some properties that are not well studied in the literature, e.g., the notion of unbeatable
and fairness in consensus protocols, and (iii) the KoP Principle and knowledge-based analysis have
wide applications, including VLSI, Biology, and real-time coordination.

The keynote was followed by a lively discussion. Some interesting and open questions are listed
below:

• How do knowledge-based analysis and game theory go together?

• What happens if we have a probabilistic notion of knowledge?

• How does the notion of oracle fit in the knowledge-based analysis?

ACM SIGACT News 39 March 2017 Vol. 48, No. 1

http://sirocco2016.hiit.fi/programme/

Award Lecture:
“Towards a Theory of Formal Distributed Systems” by Masafumi Yamashita

Masafumi (Mark) Yamashita is the recipient of the 2016 SIROCCO Prize for Innovation in
distributed computing. Mark proposed many original ideas and important results. For example,
in the seminal work “Computing on Anonymous Networks” [6, 7], Mark and Tsunehiko Kameda
introduced a very useful notion – view of agents – which is used to distinguish nodes in anony-
mous network and has wide applications. The notion of view has inspired subsequent works on
computability in anonymous networks. The prize is awarded for his lifetime contributions to the
theoretical computer science community, as well as for his efforts in introducing the concept of
Autonomous Mobile Robots to the algorithmic community and the distributed community.1

Right at the beginning, Mark showed his sense of humor (and humbleness) with the following
interpretation of the talk title: “the word ‘towards’ means immature or not ready for presenting, and
the word ‘formal’ means unrealistic or useless.” Yet, his talk actually shed light on the fundamental
question: “Why and how distributed systems can solve distributed problems?” Inspired by the
observation – “completely different systems can have essentially the same distributed view”, Mark
chose to focus on abstract distributed views, independently of actual implementation of the systems
in his research. In the talk and his recent work, he and coauthors proposed a formal model named
Formal Distributed System (FDS), which is a generalization of mobile robot model and contains
two key components: interacting (distributed) elements and an interaction model. Mark’s ultimate
goal is to have a complete theory for FDS, specifically the solvability of distributed problems. In the
rest of the talk, Mark explained the intuition of FDS, its relation to other models and applications
of FDS on solving distributed problems. The exact definition of FDS is beyond the scope of this
article. Some key properties of FDS are as follows:

• The system elements are modeled by points in a d-dimensional space (d ≥ 3).

• The interaction model contains a scheduler for the timing of interaction among elements and
interaction rules, e.g., transition functions.

• The transition function may be an incomputable function – this is a key to use FDS to model
natural systems.

• The transition function may be given by an oracle.

Then Mark explained how to use FDS to simulate other models in the literature, including wireless
networks, P2P networks, shared memory, mobile robots, beeping networks and population protocol
models, etc. There are two main open questions related to simulation: (i) How to extend FDS to
describe the environment? and (ii) Is FDS universal?

After general discussion, Mark went on to discuss three research topics in FDS: localization,
symmetry breaking, and self-organization. One insight I found interesting is the comparison be-
tween artificial and natural systems. In Mark’s formulation of natural systems, there are four
properties: anonymous ID, oblivious memory, asynchronous scheduler, and probabilistic transi-
tion function, whereas in the artificial systems, the properties are unique IDs from an ordered set,
non-oblivious memory, synchronous scheduler, and deterministic transition function. That is, the
artificial systems enjoy the help from the (artificial) infrastructure; yet, Mark observed that it is

1A wonderful laudatio along with Mark’s other key contributions can be found at http://sirocco2016.hiit.fi/
award/.

ACM SIGACT News 40 March 2017 Vol. 48, No. 1

http://sirocco2016.hiit.fi/award/
http://sirocco2016.hiit.fi/award/

actually difficult to implement self-organization (more precisely, self-stabilizing pattern formation)
in artificial systems. He then used an example of self-organization of mobile robots in 2D space to
explain his conjecture: “natural systems have more properties suitable to make them self-organizing
than artificial systems.”2

In the end, Mark discussed many interesting open questions.3 Among them, the following two
general questions are the most intriguing:

• What is the relationship between information theory and distributed computing? Particularly,
how to model the quality of information?

• What is the relationship between computation theory and distributed computing? For exam-
ple, incorporating incomputable distributed algorithms in FDS gives new insights. Can we
apply a similar approach to other models in distributed computing literature?

During the discussion, he explained how to use FDS model to capture the notion of Byzantine
faults, and how it can be related to the read-write register model.

Invited Talk:
“The Landscape of Lower Bounds for the CONGEST Model” by Keren Censor-Hillel

Keren gave a lively talk discussing lower bound results (on round complexity) in the CONGEST
model. Even though I do not have any prior experience in this topic, I was able to follow most of
the important results and relevant techniques in this talk. Keren began with the introduction of
the CONGEST and LOCAL models and explained why in the CONGEST model, both distance
and bandwidth are important factors on the lower bound and algorithm design.

Then she presented a popular method for proving lower bounds in the CONGEST model –
the proof of Ω(n/ log n) lower bound for deciding whether D = 2 or D = 3 in [4]. Here, n is the
number of nodes and D is the diameter of the graph. In [4], Frischknecht et al. developed the
reduction technique that transforms two-party communication complexity lower bounds (on the
number of bits that need to be exchanged between Alice and Bob) into lower bounds on the round
complexity of distributed algorithms in the CONGEST model (namely, Alice-Bob reduction). The
core of Alice-Bob reduction has two steps: (i) simulate distributed graph algorithms in two-party
communication, and (ii) construct sub-graphs for Alice and sub-graphs for Bob. Step (ii) is different
for each problem, whereas step (i) is more or less the same. For example, Keren discussed the case
of approximation algorithms for D, which is done by adding nodes on edges in the constructed
graphs (compared with the case of exact algorithms).

One drawback of Alice-Bob reduction is that the constructed graphs have Θ(n2) edges and
constant diameter. As most practical networks are very sparse, it is interesting to know the lower
bound on sparse networks. Keren then discussed their new results in sparse networks [1], including:

• Ω(n
log2 n

) lower bound for computing D, and

• Ω(n
log3 n

) lower bound for (32 − ε)-approximation of D.

2A more thorough discussion can be found in Mark’s recent PODC publication [8].
3These questions can be found in the award lecture slide deck http://sirocco2016.hiit.fi/slides/Towards_

a_Theory_of_Formal_Distributed_Systems.pdf

ACM SIGACT News 41 March 2017 Vol. 48, No. 1

http://sirocco2016.hiit.fi/slides/Towards_a_Theory_of_Formal_Distributed_Systems.pdf
http://sirocco2016.hiit.fi/slides/Towards_a_Theory_of_Formal_Distributed_Systems.pdf

The proofs are also based on the idea of Alice-Bob reduction. The innovative technique is using a
smaller cut (between sub-graph components corresponding to Alice and Bob) to have a more sparse
construction.

Keren then presented relevant results in computing a minimum spanning tree (MST) and in
deciding whether a graph is a spanner, in which variants of Alice-Bob reduction proofs were devel-
oped. At the end of the talk, Keren mentioned that the lower bounds for lots of specific problems
in various models are unknown. For example, computing D in planar graphs is unknown. More
importantly, Keren shared an observation that Alice-Bob reduction technique only works for global
problems (finding global properties of the graph); however, the technique does not generalize to
local problems.

Keren’s talk was followed by an active discussion. Some discussions were on specific reduction
techniques. One interesting discussion was on the relationship among Alice-Bob reduction, multi-
party communication complexity, and lower bounds in the CONGEST model.

Invited Talk:
“What Makes a Distributed Problem Truly Local?” by Adrian Kosowski

Adrian gave a talk on the LOCAL model and provided insights to the question: why coloring
may possibly be easier than MIS (Maximal Independent Set). Two key features of the LOCAL
model are: (i) Messages exchanged in each round may have unbounded size; and (ii) Each node has
unbounded computation power, because we want to focus on understanding the role of “locality”
in distributed computing. Adrian walked through a simple example on recoloring a ring with fewer
colors to illustrate the core properties of the LOCAL model. Then he showed results from prior
works on (∆ + 1)-coloring and MIS. It indicated that in the randomized model, (∆ + 1)-coloring is
indeed easier, and it is possible that (∆+1)-coloring is easier in the deterministic model as well. He
also mentioned that randomization helps reduce the complexity of (∆ + 1)-coloring in the LOCAL
model (when the graph is a tree and ∆ > 54).

In the second part of the talk, Adrian introduced the conflict coloring problem from their recent
work [3], which is a general symmetry-breaking problem – vertex-coloring, edge-coloring, maximal
matching, and MIS are all specific cases of the conflict coloring problem. Then he discussed a general
reduction technique for this kind of symmetry-breaking problem: encoding problems through edge
constraints. There are two key innovations in [3]:

• Conflict coloring is characterized by two parameters l and d, where l represents each node’s
amount of freedom to select a color, and d represents the number of constraints on colors of
neighboring nodes. In [3], they worked with ratio l/d, particularly the design of a generic
algorithm for conflict coloring problem, when l/d > ∆. (Here, ∆ is the maximum degree in
the graph.)

• They developed the “simplification mechanism” for the reduction technique, which tries to
iteratively reduce the difficulty of a given problem until it becomes simple enough to be
trivially solved. This mechanism is suitable for conflict coloring because for sufficiently large
l/d, a problem can be solved without any communication if the input is based only on the
information contained in a relatively small neighborhood around each node.

The discussion on the conflict coloring problem led to Adrian’s key messages: “Controlling conflicts
on edges is at the heart of the currently best algorithms for deterministic and randomized (∆ + 1)-
coloring and for randomized MIS.” This may also indicate why coloring is easier because in the

ACM SIGACT News 42 March 2017 Vol. 48, No. 1

LOCAL model, it is easier to handle edge constraints than vertex constraints. Adrian also discussed
why the non-signaling property is potentially another factor. In short, MIS is hard in the LOCAL
model because of the non-signaling property, whereas non-signaling (∆ + 1)-coloring is solvable
(under some circumstances). In the end, Adrian addressed how quantum communication may
affect the known results, and mentioned some open problems, e.g., LOCAL models with quantum
links.

Invited Talk:
“Challenges in Distributed Shortest Paths Algorithms” by Danupon Nanongkai

In this talk, we switched back to the CONGEST model. After giving the motivation of the
distributed s-t distance problem and several recent results, Danupon shared his observation: “dis-
tributed approximate s-t distance is essentially solved (in undirected graphs).” Then he discussed
several related open problems as follows:

• Is there a sublinear-time exact algorithm for s-t distance?

• Is there a linear-time exact algorithm for all-pairs distances ?

• Is there a O(n1/2 +D)-time approximation algorithm for s-t distance in directed graphs?
(D is the diameter)

• Is there a better exact algorithm or lower bound for finding congested clique?

• Is there a sublinear-time 2-approximation algorithm for finding diameter in weighted graphs?

Danupon mentioned that some of the open problems are hard. For example, super-constant lower
bounds for the congested clique in the CONGEST model will give new lower bounds in circuit
complexity based on the results in [2].

In the second part of the talk, Danupon addressed the technical challenges for developing s-t
shortest paths algorithms. Typically, the framework for finding s-t distance consists of three steps:
(i) From the input graph, find a skeleton with bounded-hop distances; (ii) from the skeleton, find a
sparse spanner or related structures; and (iii) some additional work dependent on the property of
the output of step (ii). Then Danupon explained why step (i) is challenging for exact algorithms,
and step (ii) is challenging for algorithms in directed graphs.

Invited Talk:
“A Survey on Smoothing Networks” by Thomas Sauerwald

In this talk, Thomas focused on designing smoothing networks for asynchronous load balanc-
ing. He began with the definitions and examples of relevant concepts: sorting networks, counting
networks, and smoothing networks.

• A sorting network consists solely of wires and comparators which can be used to sort any
input of size n. In this case, a comparator has two input wires and two output wires and
returns max of the inputs on one output wire and min of the inputs on the other.

• A smoothing network (or balancing network) consists solely of wires and asynchronous bal-
ancers, where each balancer has two input wires and two output wires and forwards arriving

ACM SIGACT News 43 March 2017 Vol. 48, No. 1

tokens (of the input stream) alternately to its two output wires. As a result, the number of
tokens differs by at most one at two output wire of a balancer. The network can be used to
“smooth” the tokens on the output wires.

• A counting network belongs to the intersection of sorting and smoothing networks. Alter-
natively, a counting network is a smoothing network with the step-property on the output
streams. The network can be used for counting by adding a local counter to each output
wire.

One main research in the field is on the design of different networks with small depth. However, the
optimal counting network is huge and requires specific initialization of all balancers (i.e., initializa-
tion on the direction of forwarding). Thus, there are interests in exploring the trade-off between
simplicity of the network and the complexity of initialization.

People have studied the randomized initialization and arbitrary initialization. Randomized
initialization achieves good discrepancy (i.e., the difference between maxload and minload). Specif-
ically, Thomas discussed the results (lower bound and upper bound on the discrepancy) related to
the CCC (Cube-Connected-Cycles) Smoothing Network.

Finally, Thomas discussed stronger notions of smoothing networks: (i) universal randomized
smoothing network where the input may be arbitrary but the initialization is known, and (ii) doubly
adversarial model where input and initialization are both controlled by an adversary. There are
many open problems in these stronger notions of smoothing networks, particularly in the case of
cascading two or more CCCs together.

Selected Paper Presentations: SIROCCO ’16 had four main categories of accepted papers:
message-passing, shared memory, mobile agent, and data dissemination/routing. Below, I will
discuss one talk for each category.

“How Many Cooks Spoil the Soup?” by Othon Michail and Paul Spirakis
Paul Spirakis talked about their work on the question: “How much parallelism does a dis-

tributed task permit?” In their work, the parallelism (or symmetry) is defined as the identical roles
that agents have at the same time. Alternatively, the question they studied is: can we solve a task
without ever electing a leader? This is an interesting and important topic related to distributed
algorithms, since the degree of parallelism indicates both the potential speed up because of increas-
ing computation power and the degree of fault-tolerance. They studied the problem in population
protocols, and they also considered the adversary scheduler, who controls the interactions between
the agents. The first set of results showed that a class of semilinear tasks can be computed with
symmetry Θ(Nmin), which is asymptotically optimal. Nmin is the minimum multiplicity of a state
in the initial configuration, i.e., the initial symmetry. The second result was an impossibility result
that stated: “the symmetry of any protocol that stably computed parity is upper bounded by an
integer depending only on the size of the protocol.” (The size of the protocol is defined as the size
of the set of all possible states.) In the end, Paul discussed several interesting open problems:

• An exact characterization of the allowable symmetry of all semilinear predicates.

• Study on how symmetry is affected by auxiliary nodes and whether they can be totally
avoided. (Auxiliary nodes are nodes in a distinct state in initial configuration.)

ACM SIGACT News 44 March 2017 Vol. 48, No. 1

• Study of networked systems in which the nodes have memory and IDs. Here, a new definition
of parallelism may be necessary, since in their work, the definition of parallelism is centered
around local state.

“Concurrent Use of Write-once Memory” by James Aspnes, Keren Censor-Hillel and Eitan Yaakobi
Keren Censor-Hillel presented their work on Write-Once Memory (WOM). The new angle was

the concurrent read/write access to the WOM. Keren first motivated the study of WOM by pointing
out that (i) WOM has no ABA problems due to write-once property, and (ii) there exists several
concurrent algorithms using write-once bits – which may be used to reduce the overhead of using
WOM. The goal of the paper was to develop algorithms that (i) allow fast updates, and (ii) update
with a small space overhead. In the system of n nodes, their first algorithm is an implementation of
an m-bit single-writer-multi-reader register using (1 + o(1))t bits for up to t writes with amortized
step complexity O(n2m) for a write and O(2m) for a read. The algorithm has two shortcomings, the
cost of high time complexity and a fixed bound on the number of writes. The second algorithm in
the paper allows unboundedly many writes and has much better amortized step complexity, but the
space complexity is unbounded. Keren pointed out that it is an open problem whether it is feasible
to have both low time complexity and low space complexity in the same algorithm. In the end,
Keren also suggested that the study on stronger primitives in WOM model, such as non-resettable
test-and-set primitive, is an interesting direction.

“Deterministic Meeting of Sniffing Agents in the Plane” by Samir Elouasbi and Andrzej Pelc
Andrzej Pelc presented the paper, discussing two mobile agents equipped with “sniffing sensors”,

compasses, and synchronized clocks that try to meet in the plane. The sniffing sensor only allows
the agent to detect if the other agent is nearby, but it does not give the agent the direction of the
other agent. They considered two models on the degree of the sniffing sensor: (i) the monotone
model that allows agents to compare different readings (of the sensor values), and (ii) the binary
model that only gives the agent 1 if the other agent is close enough (given a threshold ρ) and 0,
otherwise. In the paper, a round-optimal algorithm for the monotone model was given, whereas
the round complexity depends on ρ and the starting point of each agent in the binary model. More
interestingly, if agents start at distance αρ for some α > 1, then sniffling does not help. In the end,
Andrzej discussed several open problems for the model:

• The problems in different models, e.g., deterministic/randomized moves, and synchronous/
asynchronous moves.

• The results and the analysis in the paper were heavily dependent on the assumption that
both agents move at the speed 1. It is open if agents move at other speed.

• The assumptions of faulty compass output, e.g., erroneous sense of direction at each agent.

• The assumptions of different sniffing sensors, e.g., heterogeneous sensors for agents.

“Rumor Spreading with Bounded In-Degree” by Fabian Kuhn, Yannic Maus and Sebastian Daum
The paper was selected as the best paper and the authors were awarded a prize of 1000 euros,

sponsored by Springer. The talk was given by Yannic Maus. A Restricted Pull (RPull) model

ACM SIGACT News 45 March 2017 Vol. 48, No. 1

in the gossip model was considered in the paper – only one incoming request can be served at
each node in the RPull model. They considered random and adversarial RPull models. These
two RPull models differ in how a request is served (adversarially or uniformly). Their main result
was the proof showing an exponential separation of the round complexity between the two models.
More importantly, the technique W.h.p. Coupling, developed in the paper may be applied to other
contexts as well. Generally speaking, W.h.p. Coupling is a mechanism that links the traditional pull
model with RPull models; as a result, the traditional bound results can be applied to RPull models.
One important property is the W.h.p. part, which provides the sense of “stochastic dominance”.
Yannic mentioned that an extension would be to allow a node to “talk” (or serve the request) for
multiple rounds. The conclusion in Yannic’s talk and the ensuing discussion were quite interesting.
The discussion was centered around the question: whether the adversarial model or the random
model is the right model? The random model seems more natural, while the adversarial tries to
capture the performance of the worst case; however, these two models may not precisely describe the
scenarios in the real world. The conclusion was that some model in between should be developed.

Excursion and Business Meeting

Figure 3: The Schooner Linden. Figure 4: Fortress of Suomenlinna.

The excursion at SIROCCO ’16 included a walk from the Aalto University School of Business
to Halkolaituri pier as well as sightseeing on the Schooner Linden – a beautiful sail ship (Figure
3). During the walk, we passed by most popular spots in Helsinki, including several churches,
museums, and the House of the Estates. The ship moved in the bay near Helsinki. It also took us
to see the Fortress of Suomenlinna – a Unesco World Heritage (1991) location (Figure 4).

I was surprised to learn that we would hold the business meeting on the Schooner Linden.
While the cabin on the ship was not great for presentation4, it was a wonderful experience to have
a meeting on a ship. Below, I summarize some key points from the meeting:

• SIROCCO ’16 accepted 24 normal papers and 1 survey paper, all of which are of high quality
(received at least one +2 review).

4Jukka Suomela had to ask his students to hold the curtain so that it would not block the audience’s view! Thank
you, Jukka and his great students!

ACM SIGACT News 46 March 2017 Vol. 48, No. 1

• Thanks to the generosity of the publisher Springer and the hard work of the committee, all
the pre-proceeding version of the accepted papers are freely available online forever.

• SIROCCO ’17 will be held at Porquerolles Island (close to Marseille, France) during 06/20 –
06/22, 2017.

• The chair organizer, Jukka Suomela, received high compliments from the attendants and the
steering committee because the conference is highly well-organized.

References

[1] A. Abboud, K. Censor-Hillel, and S. Khoury. Near-linear lower bounds for distributed dis-
tance computations, even in sparse networks. In Distributed Computing - 30th International
Symposium, DISC 2016, Paris, France, September 27-29, 2016. Proceedings, pages 29–42, 2016.

[2] A. Drucker, F. Kuhn, and R. Oshman. On the power of the congested clique model. In
Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC ’14,
pages 367–376, New York, NY, USA, 2014. ACM.

[3] P. Fraigniaud, M. Heinrich, and A. Kosowski. Local conflict coloring. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science, 2016.

[4] S. Frischknecht, S. Holzer, and R. Wattenhofer. Networks cannot compute their diameter in
sublinear time. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’12, pages 1150–1162, Philadelphia, PA, USA, 2012. Society for Industrial
and Applied Mathematics.

[5] Y. Moses. Relating knowledge and coordinated action: The knowledge of preconditions princi-
ple. In Proceedings Fifteenth Conference on Theoretical Aspects of Rationality and Knowledge,
TARK 2015, Carnegie Mellon University, Pittsburgh, USA, June 4-6, 2015., pages 231–245,
2015.

[6] M. Yamashita and T. Kameda. Computing on anonymous networks. i. characterizing the solv-
able cases. IEEE Transactions on Parallel and Distributed Systems, 7(1):69–89, Jan 1996.

[7] M. Yamashita and T. Kameda. Computing on anonymous networks. ii. decision and membership
problems. IEEE Transactions on Parallel and Distributed Systems, 7(1):90–96, Jan 1996.

[8] Y. Yamauchi, T. Uehara, and M. Yamashita. Brief announcement: Pattern formation problem
for synchronous mobile robots in the three dimensional euclidean space. In Proceedings of the
2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA,
July 25-28, 2016, pages 447–449, 2016.

ACM SIGACT News 47 March 2017 Vol. 48, No. 1

	Introduction
	Automatic Synthesis of Distributed Protocols
	Introduction
	Formal Model
	Modeling Protocols
	Modeling Requirements

	Analysis and Synthesis Problems
	Protocol Verification
	Protocol Synthesis
	Protocol Completion

	Illustrative Example: the Alternating Bit Protocol
	ABP System Architecture
	The Environment Processes
	Safety and Liveness Properties: the Monitors
	ABP Sender and Receiver
	Fairness Assumptions
	ABP as a Solution to a Distributed Protocol Synthesis Problem

	Automatic Protocol Completion
	Solving the Distributed Protocol Completion Problem
	From Scenarios to Incomplete Processes
	Automatic Completion of the Alternating-Bit Protocol
	Alternative Approaches

	Conclusions

	SIROCCO 2016 Review

