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1 Introduction

Fault-tolerant consensus has received significant attention over the past three decades since the
seminal work by Lamport, Shostak, and Pease [33, 26]. The consensus problem considers n nodes,
of which at most f nodes may be faulty. In this article, we address crash faults and Byzantine
faults both. Each node is given an input value initially, and after a finite amount of time, each
fault-free node should produce an output value, which satisfies appropriate validity and agreement
conditions. This article explores the problem of using deterministic algorithms to achieve exact
and approximate consensus in directed message-passing networks, which are modeled as directed
graphs. We survey the results in both synchronous and asynchronous systems. Generally speaking,
for exact crash-tolerant consensus, the output at the nodes must equal the input of one of the
nodes. For approximate crash-tolerant consensus, the output must be in the range of the inputs of
all the nodes. For exact Byzantine consensus, the validity condition depends on whether the inputs
are binary or not: for binary inputs, the output must be the input of a fault-free node, whereas,
for multi-valued inputs, the output must equal the input of fault-free nodes when they all have the
same input. Finally, for approximate Byzantine consensus, the output must be in the range of the
inputs of all the fault-free nodes.

Historically, fault-tolerant consensus in message-passing networks has been studied extensively
both in complete graphs (e.g., [33, 15, 16, 1, 25]) and in undirected graphs (e.g., [17, 13]). The tight
conditions on undirected graphs identified in these papers are summarized in Table 1. The term
connectivity is used here to mean node connectivity [47] — removal of up to κ− 1 nodes does not
cause a κ-connected graph to become partitioned. We will often use the terms graph and network
interchangeably.

Recently, significant efforts [42, 37, 46, 11, 27, 28, 49, 29] have been devoted to solving the prob-
lem in incomplete directed networks, i.e., not every pair of nodes is connected by a communication
channel, and the communication channels are not necessarily bi-directional. The goal of these works
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Table 1: Tight Conditions on Undirected Networks
Crash-Tolerant Consensus Byzantine Consensus

Synchronous (f + 1)-connectivity, n > f (follow
from well-known results [30, 3])

(2f + 1)-connectivity, n > 3f ([17,
13])

Asynchronous (f + 1)-connectivity, n > 2f (follow
from well-known results [30, 3])

(2f+1)-connectivity, n > 3f (follows
from [1, 17])

is to fully characterize the directed graphs in which consensus is possible (under different system
and fault models). We first identify why results in undirected networks (Table 1) do not directly
apply to directed networks. Then, we present results in directed networks and briefly discuss the
intuition.

1.1 Tight Conditions on Undirected Networks

Consider the exact crash-tolerant consensus problem in synchronous systems. From Table 1, we
know that (f + 1)-connectivity, and n > f are together necessary and sufficient for achieving
consensus [30, 3] in undirected network case. There are two straightforward ways to generalize the
notion of connectivity in undirected networks to directed networks:

• (f + 1)-weak connectivity [47]: removing up to f nodes, the remaining graph is weakly con-
nected.

A directed graph is weakly connected if in the graph, any node is reachable from any other
node by traversing edges in some direction (not necessarily in the direction of the edge). It
should be obvious to see that weak connectivity is necessary, since nodes need to exchange
some information in order to achieve consensus. However, (f + 1)-weak connectivity is not
sufficient for crash-tolerant consensus. Consider the network in Figure 1. Consensus is impos-
sible to achieve even if f = 0 (every node is fault-free), since nodes v1 and v2 cannot observe
any common information.

• (f + 1)-strong connectivity [47]: removing up to f nodes, the remaining graph is strongly
connected.

A directed graph is strongly connected if in the graph, any node is reachable from any other
node by traversing edges following their directions. (f + 1)-strong connectivity and n > f
are together sufficient, because we are able to route messages between any pair of fault-free
nodes even if up to f nodes crash, which can be used to implement the reliable broadcast
primitive among fault-free nodes; thus, simulation of any crash-tolerant consensus algorithm
in complete graphs is possible in such directed graphs (assuming synchrony). To see that
(f + 1)-strong connectivity is not necessary, consider Figure 2. This network is not strongly
connected; yet, when f = 0 (every node is fault-free), consensus is possible by having both
nodes choose node v1’s input as output.

Asymmetric Information Flow These two generalizations are not adequate for specifying tight
conditions on directed networks because they do not completely capture the notion of “asymmetric
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Figure 1: A weakly-connected network.
Figure 2: A network that is not
strongly-connected.

information flow”. One way to capture such notion is by the usage of a “reduced graph” [42, 37, 46]
as shown in the following claim.

Claim 1. It is possible to achieve crash-tolerant consensus in synchronous systems in a graph G
while tolerating up to f crash faults if and only if after removing up to f nodes and all the links
incident to the removed nodes in G, there exists a source node that can reach other nodes in the
remaining graph (reduced graph), i.e., there exists a directed rooted spanning tree in the reduced
graph.

In the claim, the “remaining graph” is the reduced graph for crash-tolerant consensus in syn-
chronous systems [42]. Due to the existence of a directed rooted spanning tree in each reduced
graph, information disseminated by at least one source node (specified in the claim) can be shared
by all the fault-free nodes. Later, we discuss other forms of reduced graphs for other consensus
problems. Note that for a given G and a given f , there may exist multiple reduced graphs. The
condition requires that a directed rooted spanning tree exists in all possible reduced graphs. In the
fault-free case (f = 0), the condition requires the existence of a directed rooted spanning tree in
G. For example, the network in Figure 2 satisfies the condition; whereas, the network in Figure
1 does not satisfy the condition. Now, consider the example network in Figure 3. This network
satisfies the condition in Claim 1 for f = 1, since after removing up to 1 node, the reduced graph
is a directed rooted spanning tree.

It should be straightforward to observe that the condition in Claim 1 is necessary, since if there
is no such spanning tree after removing up to f nodes, then we can find a failure pattern to “block”
the flow of any shared information between some pair of fault-free nodes. It is less obvious why
the condition is sufficient, since the spanning tree may change over time because some nodes crash.
Later, we discuss a consensus algorithm from [42] that relies on the observation that no matter how
the failures occur, there is a directed rooted spanning tree that can “propagate” the information. In
the algorithm, each node does not know the structure of the spanning tree; however, the algorithm
still ensures that at some point of time, enough information can be propagated to all the nodes
that have not crashed yet, and each node can use this information to achieve consensus.

Observations similar to Claim 1 were first made in the context of fault-free consensus [5, 22],
and also in the context of various versions of fault-tolerant consensus problems [11, 42, 37, 46]. The
exact manner in which the source node is identified differs for the different problems because of
different assumptions on fault behaviors, system models and problem specifications.

1.2 Fault-tolerant Consensus Problem

We discuss the definition of the consensus problems here. In this article, we limit our consideration
to scalar input and output. There are four dimensions to formally define a consensus problem —
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Figure 3: An example network that tolerates one crash fault.

output type, fault model, system synchrony assumption, and algorithm type. We briefly discuss
each of the dimensions. The models are standard assumptions in the literature. Interested readers
may refer to [30, 3] for more details.

• Output Type: We consider both exact consensus [33, 25] and approximate consensus [15, 16].
Exact consensus requires the fault-free nodes to agree on exactly the same output; whereas,
approximate consensus requires the fault-free nodes to produce outputs within a certain
constant ε (ε > 0) of each other.

• Fault Model: In this article, we present only work on node faults.1 In the fault models, all links
are assumed to be reliable. However, nodes may suffer crash or Byzantine faults. Crash fault
assumes fail-stop failure model; whereas, Byzantine nodes may behave arbitrarily, including
sending incorrect and mismatching (or inconsistent) messages to different neighbors. Here,
we consider the scenario where up to f nodes in the system may be faulty (f -total fault
model).2

• System Synchrony: In synchronous systems, nodes proceed in a lock-step fashion, and we
consider both exact and approximate consensus. In asynchronous systems, no known bound
on the communication delay or processing speed exists. Moreover, it is known that exact
consensus is impossible to achieve in asynchronous systems [18]; hence, we consider only
approximate consensus.

• Algorithm Type: We consider two types of consensus algorithms:

– General algorithms: (i) nodes have complete knowledge of the network topology, and
can route messages to other nodes; and (ii) no constraint is placed on the amount of
state a node may maintain.

– Iterative algorithms: (i) nodes proceed in iterations; (ii) the computation of a new state
at each node is based only on local information, i.e., the node’s own state and states of
the neighboring nodes; and (iii) after each iteration of the algorithm, the state of each
fault-free node must remain in the convex hull of the states of the fault-free nodes at
the end of the previous iteration.

1Please refer to [38, 41] for discussion on work focusing on link faults.
2Please refer to [38] for discussion about work on f -local fault model (up to f incoming nodes of a fault-free

node may be faulty) [39, 49, 29], and generalized fault model (a fault model specifying potential locations of failures)
[43, 19].
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General algorithms usually achieve consensus more efficiently, e.g., [3, 30, 33, 25]; however,
they requires extra information and overhead, such as topology knowledge and routing mech-
anism. Therefore, iterative algorithms have been studied extensively as well. Byzantine
fault-tolerant iterative consensus has been well explored in complete and undirected graphs,
e.g., [15, 1, 3, 30, 17]. Using iterative algorithms to achieve fault-free consensus [5, 22] and ap-
proximate consensus in a restricted fault model [27, 28, 49, 29] have been studied extensively
as well.

Problem Formulation Here, we introduce different problem formulations that will be discussed
in this article. That is, a correct consensus algorithm must satisfy the corresponding properties
below. There are some differences between problem formulations for crash-tolerant and Byzantine
algorithms, because for crash faults, we do not mind if the output is an input of some crashed
nodes, whereas, for Byzantine faults, we would like to avoid using Byzantine input as the output.

• Exact Crash-Tolerant Consensus: (i) Agreement: the output (i.e., decision) at all the fault-
free nodes is identical; (ii) Validity: the output of each fault-free node equals the input of
one of the nodes; and (iii) Termination: every fault-free node decides on an output in finite
amount of time. For exact consensus, we assume that the input is an integer in [0,K] for
some positive K.

• Exact Byzantine Consensus with Binary Input: (i) Agreement: the output (i.e., decision) at
all the fault-free nodes is identical; (ii) Validity: the output of every fault-free node equals
the input of a fault-free node; (iii) Termination: every fault-free node decides on an output
in finite amount of time.

• Exact Byzantine Consensus with Multi-Valued Input: (i) Weak Validity [24]: If all fault-
free nodes have the same input, then the output of every fault-free node equals its input; (ii)
Agreement, and (iii) Termination (same as binary version).

• Iterative Approximate Crash-Tolerant Consensus: (i) Validity: After each iteration of an
iterative algorithm, the state of each fault-free node must remain in the convex hull of the
inputs of all the nodes; and (ii) Convergence: For any ε > 0, after a sufficiently large number
of iterations, the states of the fault-free nodes are guaranteed to be within ε of each other.

• Iterative Approximate Byzantine Consensus: (i) Validity: After each iteration of an iterative
algorithm, the state of each fault-free node must remain in the convex hull of the inputs of
the fault-free nodes; and (ii) Convergence (same as crash-tolerant version).

1.3 Summary of Results in Directed Networks

Given the four dimensions and consensus problems discussed in Section 1.2, we are ready to present
the summary of work on directed networks. As addressed in Table 1, tight conditions on the undi-
rected networks for solving different types of consensus problems have been identified. In addition,
the tight condition for solving approximate crash-tolerant consensus in synchronous systems follows
from the decentralized control literature [5, 22]. Some recent papers address the following problems.

• General algorithms:
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Table 2: Summary of Recent Results on Directed Networks
Fault Model System Output General Alg. Iterative Alg.

Crash
Synchronous

Exact [42]
Approx. Follows from [5, 22]

Asynchronous Approx. [42] [38]

Byzantine
Synchronous

Exact [42] Open
Approx. [37] [46]

Asynchronous Approx. Open [46]

1. Exact crash-tolerant consensus in synchronous systems [42]

2. Approximate crash-tolerant consensus in asynchronous systems [42]

3. Exact Byzantine consensus in synchronous systems [42]

4. Approximate Byzantine consensus in synchronous systems [37]

• Iterative algorithms:

1. Approximate Byzantine consensus in both synchronous and asynchronous systems [46]

2. Approximate crash-tolerant consensus in asynchronous systems [38]

There are two problems that remain open:

• Using general algorithms to solve approximate Byzantine consensus in asynchronous systems,
and

• Using iterative algorithms to solve exact Byzantine consensus in synchronous systems.

Table 2 summarizes results on consensus in directed networks and open problems in this area. We
discuss other related work in directed networks in Section 5.

2 Preliminary

2.1 System Model

The model is typical in the literature [30, 3]. We briefly discuss it for completeness. We consider
a point-to-point message-passing network in which nodes are connected by directed links. The
communication network is static, and it is represented by a simple directed graph G(V, E), where
V is the set of n nodes, and E is the set of directed edges between the nodes in V. We assume that
n ≥ 2, since the consensus problem for n = 1 is trivial. Node i can transmit messages to another
node j if directed edge (i, j) is in E . Each node can send messages to itself as well; however,
for convenience, we exclude self-loops from set E . We will often use the terms edge and link
interchangeably. All the communication links are assumed to be reliable, FIFO (first-in first-out)
and deliver each transmitted message exactly once.
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Figure 4: Edges within cliques K1 and K2 are not shown.

2.2 Terminology

Here, we introduce some terminology to facilitate the discussion. Upper case letters are used to
name sets. Lower case italic letters are used to name nodes. All paths used in our discussion
are directed paths. Recall that we consider the directed graph G(V, E). In G, node j is said
to be an incoming neighbor of node i if (j, i) ∈ E . Let N−i be the set of incoming neighbors of
node i, i.e., N−i = {j | (j, i) ∈ E}. Define N+

i as the set of outgoing neighbors of node i, i.e.,
N+

i = {j | (i, j) ∈ E}. For set B ⊆ V, node i is said to be an incoming neighbor of set B if i 6∈ B,
and there exists j ∈ B such that (i, j) ∈ E . Given subsets of nodes A and B, set B is said to have
k incoming neighbors in set A if A contains k distinct incoming neighbors of B. We now introduce
two notations that are used frequently.

Definition 1. Given disjoint non-empty subsets of nodes A and B, A
x7−→ B if B has at least x

distinct incoming neighbors in A. When it is not true that A
x7−→ B, we will denote that fact by

A
x
67−→ B.

Consider the network in Figure 4, which contains two cliques K1 and K2, each consisting of 7
nodes. Within each clique, each node has a directed link to the other 6 nodes in that clique — these
links within each clique are not shown in the figure. There are 8 directed links with one endpoint
in clique K1 and the other endpoint in clique K2. In the network, K2 has 4 incoming neighbors in

K1, namely u1, u2, u3 and u4. Thus, K1
47−→ K2. Similarly, K2

47−→ K1.

Definition 2. Given disjoint non-empty subsets of nodes A and B, A
x⇒ B if each node in B has

at least x distinct incoming neighbors in A. When it is not true that A
x⇒ B, we will denote that

fact by A
x
6⇒ B.

⇒ is different from 7−→ in Definition 1. A ⇒ B means that each node in B has enough
incoming neighbors that are in A; whereas, A 7−→ B means that all nodes in B jointly have enough
incoming neighbors that are in A. Notations 7−→ and⇒ are used to specify conditions for general

and iterative algorithms, respectively. In Figure 4, K1

1
6⇒ K2, since w4, w5, and w6 do not have any

incoming neighbor in set K2.

2.3 Main Results

We summarize the results from [42, 46, 37, 38] below. Recall that the problem formulations were
introduced in Section 1.2.
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General Algorithms We first list the results for solving different consensus problems using
general algorithms. We will use the notation 7−→ defined in Definition 1 to specify the tight con-
ditions. Each theorem below requires the graph to satisfy a certain condition: we name the condi-
tions presented in Theorems 1, 2 and 3 as CCS-G (abbreviating Crash-Consensus-Synchronous-
General), CCA-G (Crash-Consensus-Asynchronous-General) and BCS-G (Byzantine-Consensus-
Synchronous-General), respectively. Characterization of the necessary and sufficient condition on
the network topology for using general algorithms to solve approximate Byzantine consensus in
asynchronous systems remains open.

Theorem 1. Exact and approximate crash-tolerant consensus in a synchronous system are solvable
using a general algorithm iff for any partition F,L,C,R of V, where L and R are both non-empty,

and |F | ≤ f , either L ∪ C 17−→ R or R ∪ C 17−→ L.
(Condition CCS-G)

Theorem 2. Approximate crash-tolerant consensus in an asynchronous system is solvable using
a general algorithm iff for any partition L,C,R of V, where L and R are both non-empty, either

L ∪ C f+17−→ R or R ∪ C f+17−→ L.
(Condition CCA-G)

Theorem 3. Exact and approximate Byzantine consensus in a synchronous system are solvable
using a general algorithm iff for any partition F,L,C,R of V, where L and R are both non-empty,

and |F | ≤ f , either L ∪ C f+17−→ R or R ∪ C f+17−→ L.
(Condition BCS-G)

The network shown in Figure 4 above satisfies Condition BCS-G for f = 2, whereas the network
in Figure 3 above satisfies Condition CCS-G for f = 1. Note that the condition in Claim 1 is
indeed equivalent to Condition CCS-G; thus, the claim is implied by Theorem 1. We will discuss
the equivalence later.

Iterative Algorithms Below, we list the results for solving different consensus problems us-
ing iterative algorithms. We will use the notation ⇒ defined in Definition 2 to specify the
tight conditions. Each theorem below requires the graph to satisfy a certain condition: we name
the conditions presented in Theorems 4, 5, 6 and 7 as CCS-I (abbreviating Crash-Consensus-
Synchronous-Iterative), CCA-I (Crash-Consensus-Asynchronous-Iterative), BCS-I (Byzantine-
Consensus-Synchronous-Iterative), and BCA-I (Byzantine-Consensus-Asynchronous-Iterative), re-
spectively. Characterization of the necessary and sufficient condition for using iterative algorithms
to solve exact Byzantine consensus in synchronous systems remains open. Note that Condition
CCS-G is identical to Condition CCS-I; however, all the other conditions for synchronous and
asynchronous systems are not equal to their counterparts.

Theorem 4. Exact and approximate crash-tolerant consensus in a synchronous system are solvable
using an iterative algorithm iff for any partition F,L,C,R of V, where L and R are both non-empty,

and |F | ≤ f , either L ∪ C 1⇒ R or R ∪ C 1⇒ L.
(Condition CCS-I)

Theorem 5. Approximate crash-tolerant consensus in an asynchronous system is solvable using
an iterative algorithm iff for any partition L,C,R of V, where L and R are both non-empty, either
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L ∪ C f+1⇒ R or R ∪ C f+1⇒ L.
(Condition CCA-I)

Theorem 6. Approximate Byzantine consensus in a synchronous system is solvable using an it-
erative algorithm iff for any partition F,L,C,R of V, where L and R are both non-empty, and

|F | ≤ f , either L ∪ C f+1⇒ R or R ∪ C f+1⇒ L.
(Condition BCS-I)

Theorem 7. Approximate Byzantine consensus in an asynchronous system is solvable using an
iterative algorithm iff for any partition F,L,C,R of V, where L and R are both non-empty, and

|F | ≤ f , either L ∪ C 2f+1⇒ R or R ∪ C 2f+1⇒ L.
(Condition BCA-I)

Note that in Condition CCA-G (in Theorem 2) and Condition CCA-I (in Theorem 5), the
partition does not need set F , unlike other conditions.

Intuition For consensus to be achieved, there must be a way for information to “flow between”
different subsets of fault-free nodes (subsets L and R in the theorems above), despite the presence
of faulty nodes (subset F ). The different conditions above capture this intuition. Observe that, in
each case, for different values of x, we obtain the requirement of the form “either L ∪ C x7−→ R or
R ∪ C x7−→ L” (or analogously L ∪ C x⇒ R or R ∪ C x⇒ L). Intuitively, after removing the subset
F (i.e., isolating the faulty behavior), information must be able to “flow” either from L ∪ C to R,
or from R ∪ C to L in the remaining graph, but it is not necessary that the information flows in
both directions — this “asymmetry” in the necessary and sufficient condition is a consequence of
the directed nature of the communication network. The value of x is to ensure that some fault-free
node(s) in either L or R has enough redundant information/messages to mask faulty behaviors.

For general algorithms, we use 7−→ , because with the topology information and the ability to
route message, nodes in the set R or L may be able to share information within the set. In contrast,
for iterative algorithms, computation is performed locally, and thus, we use ⇒ to represent the
tight condition. That is, every node requires enough incoming neighbors from outside. Last, in
many cases, we are able to obtain an equivalent condition that requires the existence of directed
rooted spanning tree in the reduced graph. For example, the condition in Claim 1 is equivalent to
Condition CCS-G (in Theorem 1).3

Lower Bounds on Number of Nodes As shown below, the tight conditions imply the lower
bounds on the number of nodes, n. Recall that by definition, |V| = n. These lower bounds are
well-known results in complete and undirected graphs [3, 30, 17, 15, 33]. We include them here for
completeness. Recall that by assumption, up to f nodes may be faulty in the system.

• Condition CCA-G implies that n ≥ 2f + 1.

• Condition BCS-G implies that n ≥ 3f + 1.

• Condition CCA-I implies that n ≥ 2f + 1.

3As shown in [46, 42, 37], the manner of constructing reduced graphs varies for different consensus problems.
Claim 1 only provides the construction for crash-tolerant consensus in synchronous systems.
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• Condition BCS-I implies that n ≥ 3f + 1.

• Condition BCA-I implies that n ≥ 5f + 1.

The proofs for the claims above can be found in [38, 46].

Relations among Tight Conditions As noted above, these tight conditions capture how in-
formation can “flow between” different subsets of fault-free nodes despite the presence of faulty
nodes under different synchrony assumptions. This section compares these tight conditions.

Lemma 1. Conditions CCS-G, CCA-G and BCS-G are progressively stronger.

• Condition BCS-G implies Condition CCA-G, but not vice-versa.

• Condition CCA-G implies Condition CCS-G, but not vice-versa.

The proof can be found in [42]. Similarly, the following lemmas can be proved.

Lemma 2. Conditions CCS-I, CCA-I, BCS-I and BCA-I are progressively stronger.

• Condition BCA-I implies Condition BCS-I, but not vice-versa.

• Condition BCS-I implies Condition CCA-I, but not vice-versa.

• Condition CCA-I implies Condition CCS-I, but not vice-versa.

It turned out that only are Conditions CCS-I and CCS-G equivalent, and the rest pairs of
conditions for iterative and general algorithms are all different as stated in the lemma below.

Lemma 3.

• Condition CCA-I implies Condition CCA-G, but not vice-versa.

• Condition BCS-I implies Condition BCS-G, but not vice-versa.

3 Crash-Tolerant Consensus in Synchronous Systems

In this section, we discuss results related to solving exact crash-tolerant consensus in synchronous
systems using general algorithms in detail. Recall that we defined the crash-tolerant consensus
problems in Section 1.2. Then, we briefly discuss other results related to crash-tolerant consensus
in synchronous systems.

3.1 Solving Exact Consensus using General Algorithms

By definition, general algorithms allow nodes to have complete knowledge of network topology;
hence, it is possible to use a routing mechanism in general algorithms.
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3.1.1 Necessity of Condition CCS-G

Theorem 1 in Section 2.3 presented the necessary and sufficient condition (named Condition CCS-
G) for solving the above problem in directed graphs using general algorithms. It is straightforward
why Condition CCS-G is necessary, since to achieve exact consensus, some shared information needs
to “flow” to any two subsets of fault-free nodes after some other nodes crash. If Condition CCS-G
does not hold for the graph G, then it is possible to find a subset of up to f nodes whose removal
would “block” the flow of shared information to two sets of other nodes.

3.1.2 Sufficiency of Condition CCS-G (Exact Consensus)

In [42], we proved the sufficiency of Condition CCS-G constructively by presenting an algorithm,
called MVC, and proving its correctness. Algorithm MVC can achieve consensus with multi-valued
inputs, i.e., an input is an integer in [0,K] for some positive K. MVC uses Algorithm Min-Max
presented below as a component. Algorithm Min-Max can achieve consensus with binary inputs
(0 or 1). These two algorithms prove sufficiency of Condition CCS-G, but they are not necessarily
the most efficient. Development of optimal algorithms needs further research. For brevity, we only
discuss the binary consensus algorithm below. Interested readers can find Algorithm MVC in [42].

Algorithm Min-Max
Note that Algorithm Min-Max has input parameter xi. To achieve binary consensus, each node

i performs Algorithm Min-Max passing its binary input value as parameter xi to Algorithm Min-
Max. Algorithm Min-Max uses Compute as a sub-routine. Compute has two parameters: t, which
is a binary value, and Function, which may be specified as Min and Max. In the last step of each
round in Compute at node i, the Function is applied to set Si. Min(Si) returns the minimum of
the values in set Si, and Max(Si) returns the maximum of the values in set Si.

Algorithm Min-Max(xi) for node i ∈ V

Initialization: vi[0] := parameter xi passed to Min-Max

• For phase number p := 1 to 2f + 2:

If p mod 2 = 0, then (Min Phase)

vi[p] := Compute (vi[p− 1], Min)

Else, (Max Phase)

vi[p] := Compute (vi[p− 1], Max)

• Return vi[2f + 2]

Compute(t, Function) for node i ∈ V

• τi := t

• Perform n− 1 rounds, each round consisting of the four steps below:

Send τi to all the nodes in N+
i ∪ {i}

Receive values from N−i ∪ {i}
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Denote the set of values received

in the previous step as Si

τi := Function(Si)

• Return τi

Correctness of Algorithm Min-Max with Binary Inputs We first prove a useful lemma,
and introduce the notion of source of the graph.

Lemma 4. Suppose that graph G(V, E) satisfies Condition CCS-G. For any F ⊆ V, such that
|F | ≤ f , let GF denote the subgraph of G induced by the nodes in V − F . There exists at least one
node in GF that has directed paths in GF to all nodes in V −F . Such a node is said to be a source
for GF .

Proof. The proof of the lemma is by contradiction. Suppose that Graph G(V, E) satisfies Condition
CCS-G, and for some F ⊆ V, |F | ≤ f , there exists a pair of nodes i, j 6∈ F such that there is no
node s that has directed paths to both i and j in subgraph GF induced by nodes in V − F . For
the subgraph GF and a node x in V −F , define Sx as the set of all nodes that have directed paths
in GF to node x. Note that Sx contains x as well, because x trivially has a path to itself.

By assumption, Si and Sj are disjoint. Moreover, there must be no path from any node in Si to
any node in Sj in GF , and vice versa, since otherwise, there would exist some node that can reach
both nodes i and j, which contradicts our assumption above. Now, define L,C,R as follows:

• L := Si

• R := Sj

• C := V − F − L−R

Then, we make the following observations:

• F and C may be empty, but L and R are non-empty : This is true because i ∈ Si = L and
j ∈ Sj = R.

• Nodes in C (if non-empty) have no link to nodes in L ∪ R: If some node c ∈ C has a link
to some node x ∈ L = Si, then c will be able to reach node i on a directed path via node x
(since x ∈ Si has a path to i, by definition of set Si). This would then imply that c must be
in Si, however, that contradicts the definition of C as V −F −L−R. By a similar argument,
nodes in C cannot have links to nodes in R.

• There is no link from any node in L to nodes in R, and vice versa: Recall that L = Si and
R = Sj . If some node x ∈ L has a link to a node y ∈ R, then x will have a directed path to
node j via node y. However, this contradicts our assumption above that no node has directed
paths to both i and j.

These observations together imply that L ∪ C
1
67−→ R and C ∪ R

1
67−→ L. That is, G(V, E) does not

satisfy Condition CCS-G. This is a contradiction. Thus, Lemma 4 is proved.
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From the proof above, it is not hard to prove the other direction, which implies that Condition
CCS-G is equivalent the condition in Claim 1. The proof is left as an exercise for readers. Lemma 4
defines the notion of a source node. Essentially, the lemma shows the existence of a directed rooted
spanning tree in the induced graph GF , which has the source node as the root. Note that the
induced graph GF is also called “reduced graph” [42]. Presence of such “source” nodes (or root)
is crucial in achieving consensus. Similar observations were first made in the context of fault-free
consensus [5, 22].

Now, we are ready to show the correctness of Algorithm Min-Max. The proof of correctness
assumes that graph G(V, E) satisfies Condition CCS-G.

Lemma 5. Algorithm Min-Max satisfies the termination, agreement and validity properties.

Proof. Since Algorithm Min-Max executes a fixed number of phases, its termination occurs in finite
time. Validity is satisfied trivially as well. Now we prove that the algorithm satisfies the agreement
property when the inputs are binary (0 or 1). We start by observing that Compute(t,Min) never
returns a value larger than parameter t passed to Compute, and Compute(t,Max) never returns a
value smaller than parameter t passed to Compute.

Fix an execution of the algorithm. Since there are 2f + 2 phases, there must exist a pair of
consecutive phases p∗, p∗ + 1 such that no node crashes in phases p∗ and p∗ + 1. Without loss of
generality, let p∗ be the Min Phase (i.e., p∗ mod 2 = 0) and p∗ + 1 be the Max Phase. Denote by
F the set of nodes that crash before starting phase p∗.

Lemma 4 shows the existence of a source node that has directed paths in GF to all nodes in
V − F (GF is defined in the Lemma). In general, there may be multiple such source nodes in GF .
Consider the two cases below. In each case, we show that agreement is achieved.

• Case I: There exists a source s in GF for which vs[p
∗ − 1] = 0: Thus, during the Min Phase

p∗, node s will call Compute(0,Min). Then during the first round of Compute in phase p∗,
those nodes in V − F with incoming links from node s will update their τ variable (within
Compute) to be 0. Recall that we are presently assuming binary inputs. Since the source node
has directed paths (of length at most n − 1) to all the nodes in GF , it follows by induction
that each node i in V − F will update its state τi to be 0 by the end of the n − 1 rounds
performed within Compute. Thus, when Compute returns, vi[p

∗] at each i ∈ V − F will be
set to 0. It should be easy to see that the remaining phases will not change the value of vi at
the fault-free nodes, ensuring agreement when the algorithm terminates.

• Case II: For each source s in GF , vs[p
∗ − 1] = 1:

In this case, we argue that, for each source s, vs[p
∗] = 1. Suppose, by way of contradiction,

that each source s of GF has vs[p
∗ − 1] = 1, but there exists a source node s′ for which

vs′ [p
∗] = 0. For this to happen, node s′ must receive 0 on a path from some other non-source

node z during phase p∗. This implies that vz[p
∗ − 1] = 0; additionally, the fact that there

exists a path in GF from z to the source node s′ implies that z is also a source in GF . This
contradicts the assumption that all source nodes in GF have state equal to 1 at the start of
phase p∗.

This shows that, for each source node s, we have vs[p
∗] = 1. Now consider Max Phase p∗+ 1.

Recall that no node crashes in Phases p∗ and p∗ + 1. Thus, by an argument analogous to
that used for Min Phase p∗ in Case I above, it follows that, for all i ∈ V − F , vi[p

∗ + 1] = 1,
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achieving agreement. Any additional phases beyond phase p∗ + 1 will not result in violation
of the agreement, similar to Case I.

As addressed above, we have developed a multi-valued algorithm, Algorithm MVC, in [42]. This
proves the sufficiency of Condition CCS-G for achieving exact consensus. We defer the discussion
of approximate consensus to Section 3.2.2.

3.2 Other Results

In this section, we discuss other results for solving crash-tolerant consensus in synchronous systems.

3.2.1 Solving Consensus using Iterative Algorithms

We presented a general consensus algorithm in Section 3.1. Here, we consider iterative approximate
consensus (defined in Section 1.2).

Necessity and Sufficiency of Condition CCS-I (Approximate Consensus) Theorem 4 in
Section 2.3 presented the necessary and sufficient condition (named Condition CCS-I) for solving
approximate consensus using iterative algorithms. Necessity is trivial, since Condition CCS-I is
equivalent to CCS-G. Moreover, since Condition CCS-I implies the existence of directed rooted
spanning tree at all time (Claim 1 and Lemma 4), it is straightforward to adapt the analysis for
iterative fault-free consensus algorithms to show that Condition CCS-I is sufficient for achieving
approximate crash-tolerant consensus [5, 22]. Lately, Charron-Bost et al. extended the analysis to
dynamic directed graphs [11].

Necessity and Sufficiency of Condition CCS-I (Exact Consensus) It is straightforward to
adapt Algorithm Min-Max to iterative structure, since we do not require any routing mechanism in
Algorithm Min-Max. Moreover, the state at each fault-free node is guaranteed to be some fault-free
node’s input (as shown in proof of Lemma 5). Thus, the iterative version of Algorithm Min-Max
solves binary exact consensus. However, Algorithm MVC, the multi-valued consensus algorithm
based on Algorithm Min-Max, relies on more complicated state variables, and does not satisfy the
validity property mentioned in Section 3.2.1. The problem of using iterative algorithm to achieve
multi-valued exact consensus remains open.

3.2.2 Solving Approximate Consensus using General Algorithms

We discussed an exact consensus algorithm, Algorithm MVC, in Section 3.1. The existence of
Algorithm MVC only partially proves Theorem 4, since Algorithm MVC does not solve approximate
consensus — approximate consensus allows input to be an arbitrary real number in [0,K]; whereas,
in exact consensus, the input is restricted to some integer in [0,K]. To see that Condition CCS-G
is also sufficient for solving approximate consensus, observe that Condition CCS-I is equivalent
to CCS-G; hence, Theorem 4 implies the claim of tight condition on the directed communication
networks for achieving approximate consensus in Theorem 1.
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4 Byzantine Consensus in Synchronous Systems

Section 3 presented results related to crash faults. Here, we study Byzantine faults. For brevity,
we only present the intuition in this section, and the full proofs and the algorithms are presented
in [40, 38, 37]. Recall that we defined the Byzantine consensus problems in Section 1.2.

4.1 Solving Exact Consensus using General Algorithms

4.1.1 Necessity and Sufficiency of Condition BCS-G

Theorem 3 in Section 2.3 presented the necessary and sufficient condition (named Condition BCS-
G) for solving exact consensus problem in directed graphs using general algorithms. The necessity of
Condition BCS-G can be proved using the indistinguishability proofs [17, 13]. To prove sufficiency,
we first develop an algorithm to achieve Byzantine consensus with binary inputs, and then use it
to achieve multi-valued Byzantine consensus. We now introduce the notion of reduced graph and
then present an observation that is useful to construct a Byzantine consensus algorithm in directed
graphs that satisfy Condition BCS-G. Note that the notion of reduced graph here is different from
the one presented in Claim 1 and Lemma 4.

Definition 3. (Reduced Graph) For a given graph G(V, E), and sets F ⊂ V, F1 ⊂ V − F , such
that |F | ≤ f and |F1| ≤ f , reduced graph GF,F1(VF,F1 , EF,F1) is defined as follows: (i) VF,F1 = V−F ,
and (ii) EF,F1 is obtained by removing from E all the links incident on the nodes in F , and all the
outgoing links from nodes in F1. That is, EF,F1 = E − {(i, j) | i ∈ F or j ∈ F} − {(i, j) | i ∈ F1}.

Intuition Suppose G(V, E) satisfies Condition BCS-G. Then, for any F ⊂ V and F1 ⊂ V − F ,
where |F | ≤ f and |F1| ≤ f , there exists a set of at least f + 1 nodes S ⊆ V −F such that (i) nodes
in S are strongly connected in reduced graph GF,F1 , and (ii) for each j ∈ V −F − S, there exist at
least f + 1 pairwise node-disjoint paths from S to j in G that do not contain any nodes in F .

The proposed algorithm for binary consensus maintains a state variable at each node, with the
invariant that this state variables at each fault-free node aways has a “valid” value, where a value is
“valid” if it is an input at some fault-free node. Intuitively, the above f + 1 disjoint paths from the
nodes in S to nodes in V −F −S provide adequate redundancy to allow propagation of values from
the nodes in S to the nodes in V −F −S, with the guarantee that any potential message tampering
by faulty nodes would not cause the recipients to accept an “invalid” value. In the fortuitous
event that the nodes in F are faulty and the nodes in S (which are fault-free) have the same valid
state variable, this value is then propagated to all the fault-free nodes, achieving consensus. The
algorithm ensures that this fortuitous event occurs at least once during the execution. The rest of
the details are presented in [40, 38].

Interesting Observation One interesting implication of Condition BCS-G is that there exist
graphs that satisfy Condition BCS-G wherein reliable communication may not be feasible in either
direction across a given cut. For a pair of fault-free nodes x, y, reliable communication is feasible
from x to y if there are 2f + 1 node-disjoint directed paths from x to y (when up to f nodes may
fail). Now, consider the network in Figure 4 again. Observe that there are only 4 directed links
from K1 to K2, and 4 directed links from K2 to K1. Thus, reliable communication is not guaranteed
across the cut (K1,K2) in either direction when f = 2 (Byzantine faults). Yet, Byzantine consensus
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is achievable in synchronous systems since this graph satisfies Condition BCS-G for f = 2. We
prove this claim in [40, 38].

4.2 Solving Approximate Consensus using General Algorithms

4.2.1 Necessity and Sufficiency of Condition BCS-G

In [37], Su and Vaidya introduced a family of algorithms in which nodes can perform routing within
their l-hop neighborhood (1 ≤ l ≤ d), where d is the diameter of the graph, and proved the tight
condition for each choice of l. Note that when l = 1, the algorithm belongs to the class of iterative
algorithms, and when l = d, the algorithm belongs to the class of general algorithms. The second
part of Theorem 3 follows from the results in [37].

4.3 Solving Approximate Consensus using Iterative Algorithms

Here, we briefly discuss the results on approximate Byzantine consensus, i.e., Theorem 6. Note
that as addressed before, the tight condition for using iterative algorithms to solve exact Byzantine
consensus in synchronous systems remains open.

4.3.1 Necessity and Sufficiency of Condition BCS-I

In [46], we proved that Condition BCS-I is necessary using logic similar to the indistinguishability
proofs [17, 13]. Roughly speaking, if Condition BCS-I does not hold, then we can let the nodes in
F (if non-empty) to be Byzantine faulty, and there exists a certain Byzantine behavior to make
sure no algorithm satisfies ε-agreement and validity at the same time. For sufficiency, we provided
an iterative algorithm in [46], which was inspired by the iterative algorithm developed for complete
networks [15]. To discuss the intuition of the correctness, let us present another type of reduced
graph. Note that the notion of reduced graph here is different from Definition 3.

Definition 4. (Reduced Graph) For a given graph G(V, E) and F ⊂ V, a graph GF (VF , EF ) is
said to be a reduced graph, if: (i) VF = V − F , and (ii) EF is obtained by first removing from E
all the links incident on the nodes in F , and then removing up to f other incoming links at each
node in VF .

Intuition Condition BCS-I can be proved to be equivalent to the following condition: in all
reduced graphs as per Definition 4, there exists a directed rooted spanning tree. The complete proof
is presented in [46]. We developed a proof technique based on famous matrix tools [22, 48, 5, 20]
to prove the correctness of fault-tolerant iterative algorithms [44, 43, 45]. We used the technique
along with the equivalent condition to prove that the proposed iterative algorithm correctly achieves
approximate Byzantine consensus in synchronous systems in [44]. This shows that Condition BCS-I
is sufficient.4

5 Related Work

Consensus with Various Graphs Properties Previous work also studied graph properties for
other related problems. Bansal et al. [4] identified tight conditions for achieving exact Byzantine

4The sufficiency of Condition BCS-I can also be proved using first-principle approach as presented in [46].
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consensus with authentication tools in undirected graphs. Bansal et al. discovered that all-pair
reliable communication is not necessary to achieve consensus when using authentication. This
article discusses results that do not rely on authentication tools. As discussed in Section 4.1.1,
all-pair reliable communication is not necessary for consensus in this case. Alchieri et al. [2]
explored the problem of achieving exact consensus in unknown networks with Byzantine nodes,
but the underlying communication graph is assumed to be fully-connected (complete network).
The results presented in this article assume either the knowledge of immediate neighbors (iterative
algorithms), or the knowledge of the complete topology. Moreover, the communication network
may be incomplete.

Recently, researchers explored the consensus problem in directed dynamic networks [9, 8, 10, 11,
35], where communication network changes over time. For synchronous systems, [10, 11] solved ap-
proximate crash-tolerant consensus in directed dynamic networks using local averaging algorithms.
In the asynchronous setting, [10, 11] addressed approximate consensus with crash faults in complete
graphs (which are necessarily undirected). [9, 8, 10, 11, 35] did not consider Byzantine faults.

[9, 35, 8] considered the message adversary, which controls the communication pattern, i.e.,
the adversary has the power to specify the sets of communication graphs. Biely et al. studied the
exact consensus problem [8] and k-set consensus problem [9, 35] (i.e., at most k different outputs
at fault-free nodes) in dynamic networks under the message adversary, and the system is assumed
to be synchronous. All the nodes are assumed to be fault-free in [9, 35, 8].

Iterative Approximate Consensus in Incomplete Graphs There is also rich work on using
iterative algorithms to solve approximate consensus in the presence of faults. Dolev et al. presented
the early results on Byzantine fault-tolerant iterative consensus [15]. The initial algorithms [15, 30]
were proved correct in fully connected networks (i.e., complete networks). Fekete [16] studied the
convergence rate of the approximate consensus algorithms. Abraham et al. proposed an algorithm
for approximate Byzantine consensus [1] that has optimal resilience (optimal number of nodes for
achieving consensus).

A restricted fault model — called “malicious” fault model — in which the faulty nodes are
restricted to sending identical messages to their neighbors has also been explored extensively [27,
28, 49, 29]. In contrast, the Byzantine model considered in this article allows a faulty node to send
different messages to different neighbors. LeBlanc and Koutsoukos [27] addressed a continuous time
version of the consensus problem with malicious faults in complete graphs. Under both malicious
and Byzantine fault models, LeBlanc and Koutsoukos [28] have identified some sufficient conditions
under which the continuous time version of iterative consensus can be achieved with up to f faults
in the network; however, these sufficient conditions are not tight.

For the malicious fault model, LeBlanc et al. [29] have obtained tight necessary and sufficient
conditions for tolerating up to f total number of faults in the network (f -total fault model). Under
the malicious model, since a faulty node must send identical messages to all the neighbors, the
necessary and sufficient conditions are weaker than those developed for the Byzantine fault model
(in [46]). For instance, under the malicious model, iterative consensus is possible in a complete
graph consisting of 2f + 1 nodes, whereas at least 3f + 1 nodes are necessary for consensus under
the Byzantine fault model.

Iterative approximate consensus algorithms that do not tolerate faulty behavior have been
studied extensively in the decentralized control area. Bertsekas and Tsitsiklis [5] and Jadbabaei,
Lin and Morse [22] have explored approximate consensus in the absence of faults, using only near-
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neighbor communication in systems wherein the communication graph may be partially connected
and dynamic.

Reliable Communication and Broadcast Several papers have also addressed communication
between a single source-receiver pair, i.e., reliable communication problem. Dolev et al. [14]
studied the problem of secure communication, which achieves both fault-tolerance and perfect
secrecy between a single source-receiver pair in undirected graphs, in the presence of node and link
failures. Desmedt and Wang considered the same problem in directed graphs [12]. Shankar et al.
[36] investigated reliable communication between a source-receiver pair in directed graphs allowing
for an arbitrarily small error probability in the presence of a Byzantine failures. Maurer et al.
explored the problem in directed dynamic graphs [31].

There has also been works on the reliable broadcast problem, in which a fault-free source needs
to send its input to all the fault-free nodes. The fault model under consideration is the f -local
Byzantine fault model, in which up to f incoming neighbors of each fault-free nodes may become
Byzantine faulty. [23] studied the problem in an infinite grid. [6, 7] developed a sufficient condition
in the context of arbitrary network topologies, but the sufficient condition proposed is not tight.
[34] provided necessary and sufficient conditions, but the two conditions are not tight either. [21]
provided another condition that can approximate (within a factor of 2) the largest f for solving
reliable broadcast. Independently, [32] and [39] presented the tight condition for achieving reliable
broadcast in undirected and directed graphs, respectively.

6 Summary

In this article, we survey the results on fault-tolerant consensus in directed networks. We briefly
discuss the intuitions on the results and some details of the tight conditions for synchronous systems.
Finally, we discuss papers in message-passing networks that are relevant to this topic. Two problems
in this area remain open:

• Using general algorithms to solve approximate Byzantine consensus in asynchronous systems,
and

• Using iterative algorithms to solve exact Byzantine consensus in synchronous systems.
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