
Distributed Computing Column 54
Transactional Memory: Models and Algorithms

Jennifer L. Welch
Department of Computer Science and Engineering

Texas A&M University, College Station, TX 77843-3112, USA
welch@cse.tamu.edu

This issue’s column consists of a review article by Gokarna Sharma and Costas Busch on models
and algorithms for transactional memory (TM), with particular emphasis on scheduling. With the
ever-growing popularity of TM, this is a timely topic. The authors cover three main models.
First, work on transaction scheduling algorithms for tightly-coupled systems are surveyed. Second,
distributed networks systems are considered; the new aspect is how to find the shared objects
efficiently and provide consistency of the objects after transactions terminate. Third, related results
for non-uniform memory access systems are surveyed, with emphasis on how to provide consistency
in a load-balanced way. The article closes with a discussion of future directions.

You might want to check out previous coverage of TM in this Column, dating back to 2008. In
March of that year, the entire column was devoted to the topic, in the context of multicore systems.
The first four Workshops on the Theory of Transactional Memory (WTTM) are reviewed in the
December 2009, December 2010, March 2012, and December 2012 issues. The latter issue also
covers the awarding of the 2012 Dijkstra Prize for the work by Herlihy, Moss, Shavit and Touitou
on TM.

Many thanks to Gokarna and Costas for their contribution!

Call for contributions: I welcome suggestions for material to include in this column, including
news, reviews, open problems, tutorials and surveys, either exposing the community to new and
interesting topics, or providing new insight on well-studied topics by organizing them in new ways.

1

Transactional Memory: Models and Algorithms

Gokarna Sharma
Louisiana State University
Baton Rouge, LA, USA
gokarna@csc.lsu.edu

Costas Busch
Louisiana State University
Baton Rouge, LA, USA
busch@csc.lsu.edu

1 Introduction

Modern multicore architectures enable the concurrent execution of an unprecedented number of
threads. This gives rise to the opportunity for extreme performance and the complex challenge
of synchronization. Conventional lock-based synchronization has several drawbacks which limits
the parallelism offered by multicore architectures. Coarse-grained locks do not scale. Fine-grained
locks are difficult to program correctly because locks are generally not composable. Transactional
memory (TM) [45, 81] provides an alternative synchronization mechanism that is non-blocking,
composable, and easier to write than lock-based code [64]. TM-based synchronization has recently
been included in IBM’s Blue Gene/Q [39, 84] and Intel’s Haswell processors [20]. TM is predicted
to be widely used in future processors, possibly even GPUs [32, 86]. In the research community,
several TM implementations (hardware, software, and hybrid) have been proposed and studied,
e.g., [16, 24, 26, 30, 31, 43, 44, 60]. The TM book by Harris et al. [40] provides an excellent
overview of the design and implementation of TM systems up to early spring 2010.

TM operates in a way similar to database transactions, and aggregates a sequence of shared
resource accesses (reads or writes) that should be executed atomically (by a single thread) in a
fundamental module called transaction. A transaction is a piece of code that executes a series of
reads and writes to shared memory. These reads and writes logically occur as a transaction at a
single instance in time; intermediate states are not visible to other (successful) transactions. TM
increases parallelism as no threads need to wait for access to a shared resource and different threads
can simultaneously modify disjoint parts of a data structure that would normally be protected
under the same lock. A transaction ends either by committing, in which case all of the updates
take effect, or by aborting, in which case no update is effective. Each program thread generates
a sequence of transactions. Transactions of the same thread execute sequentially by following the
program execution flow. However, transactions of different threads may conflict when they attempt
to access the same shared memory resources. The advantage of TM is that if there are no conflicts

ACM SIGACT News 2 June 2014 Vol. 45, No. 2

between transactions then the threads continue execution without delays that would have been
caused unnecessarily if locking mechanisms were used. Thus, TM can be viewed as an optimistic
synchronization mechanism [44].

Transaction conflicts are detected using conflict detection mechanisms [83]. If a transaction T
discovers that it conflicts with another transaction T ′ (because they access a shared resource), then
T has the following three choices: (i) it can give T ′ a chance to finish and commit by T aborting
itself; (ii) it can proceed and commit by forcing T ′ to abort; the aborted transaction T ′ then retries
immediately again until it eventually commits; or (iii) it can wait (or back off) for a short period of
time and retry the conflicting access again. In other words, a conflict handling mechanism decides
which transactions should continue and which transactions should abort and try again until they
eventually commit. This decision process leads us to the transaction scheduling problem. Typically,
this transaction scheduling problem is online in the sense that transaction conflicts are not known
a priori.

To solve the transaction scheduling problem efficiently, each transaction consults with the con-
tention manager module of the TM system for which choices to make. DSTM [44] is the first
software TM (STM) implementation that uses a contention manager as an independent module
to resolve conflicts between transactions and ensure progress – some useful work in done in each
time step of the execution. A major challenge in guaranteeing progress through contention man-
agers is to devise a scheduling algorithm which ensures that all transactions commit in the shortest
possible time. Given a set of transactions, a central optimization metric in the literature, e.g.
[6, 8, 34, 36, 68, 70], is to minimize the makespan which is defined as the duration from the start
of the execution schedule, i.e., the time when the first transaction is issued, until all transactions
commit. In a dynamic scenario where transactions are issued continuously, the makespan translates
to the throughput, measured as the number of committed transactions per unit of time.

Since it is projected that a processor chip will have a large number of cores, it is important to
design TM systems which scale gracefully with the variability of the system sizes and complexities.
To achieve this goal, it is desirable to devise scheduling algorithms which have both good theoretical
asymptotic behavior and also exhibit good practical performance. Provable formal properties help
to better understand worst-case and average-case scenarios and determine the scalability potential
of the system. It is also equally important to design scheduling algorithms with good performance
for various reasonable practical execution scenarios. We proceed by models and metrics that capture
the performance evaluation of scalable TM systems.

TM Models: TM has been studied mainly in three system models that we describe below. The
main distinction between these models is the variation of the intra-core communication cost in
accessing shared memory locations. The communication cost can be symmetric, asymmetric, or
partially symmetric. These types of communication cost models are appropriate to cover tightly-
coupled systems, larger scale distributed systems, and their combinations.

• Tightly-coupled systems (symmetric communication): This model represents the most com-
mon scenario where multiple cores reside in the same chip. The shared memory access mech-
anism is implemented through a multi-level cache coherence algorithm (see left of Fig. 1).
The cost of accessing shared resources is symmetric (uniform) across different processors.

• Distributed networked systems (asymmetric communication): This model represents the sce-
nario of completely decentralized distributed shared memory where processors are connected

ACM SIGACT News 3 June 2014 Vol. 45, No. 2

Figure 1: Left: a hierarchical multilevel cache; Right: a processor communication graph.

through a large-scale message passing system. Typically, the network is represented as a
graph where the processors are nodes and links are weighted edges (see right of Fig. 1). The
distance between processor nodes plays a significant role in the communication cost which is
typically asymmetric among different network nodes. Note that this model is general enough
to also include the uniform case of the tightly-coupled systems. This model is also suit-
able to model transaction scheduling scenarios that arise in cloud computing systems and
heterogenous architectures.

• Non-uniform memory access systems (NUMA, partially symmetric communication): This
model is a bridge between tightly-coupled systems and distributed systems described above.
It represents a set of multiprocessors communicating through a small scale interconnection
network. The interconnection network has a regular structure such as a grid (mesh), hyper-
cube, butterfly, etc.; see Fig. 6 for a 3-dimensional multicore processor grid. Such network
topologies have been extensively studied in the literature [55] and have predictable perfor-
mance guarantees in terms of communication efficiency. There are two levels of communica-
tion: local (symmetric) communication within cores of the same processor and larger-scale
(asymmetric) communication between different processors in different areas of the network
topology. High performance multiprocessors are typically organized with such an architecture,
e.g. [1, 19, 48], and their efficiency is vital for scientific applications.

Performance Evaluation Metrics: We focus on the following metrics that are used for evalu-
ating the formal and experimental performance of transaction scheduling algorithms in the afore-
mentioned TM models. These metrics include time, communication cost, and load.

• Makespan: It measures the commit duration for the last transaction in a given input set of
transactions. This is a typical performance metric in transaction scheduling. In a dynamic
setting, the makespan translates to throughput. A primary goal for a transaction scheduling
algorithm (i.e., a contention manager) is to minimize the makespan.

• Communication cost: It concerns distributed network TM models, and measures the number
of messages sent on network links for scheduling the transactions. This metric relates to the
total utilization of the distributed system resources, and it translates to the time and energy
performance of the distributed transaction scheduling.

• Load balancing: This is particularly relevant for distributed and NUMA models, and it con-
cerns the load of the network edges and nodes that is involved in fulfilling requests for the

ACM SIGACT News 4 June 2014 Vol. 45, No. 2

shared objects. Load balancing is important when energy and resource utilization needs to
be minimized.

We now outline what topics are covered and how this column is organized. Different models and
algorithmic topics are covered depending on the TM models (tightly-coupled, distributed networked,
or NUMA) as described below.

Overview and Organization: We survey in this column the work that has been done in the
literature in the design, development, and analysis of transaction scheduling algorithms in typical
tightly-coupled systems and in newly-considered distributed and NUMA systems. In particular,
we consider the previous upper bound, lower bound, impossibility, and experimental results, and
provide high level details of our results. We discuss results for tightly-coupled systems in Section 3.
We then discuss results for distributed networked systems in Section 4. In distributed networked
systems, transactions are scheduled and conflicts are resolved in each network node using a globally-
consistent scheduling algorithm similar to the one that is designed for TM implementation in tightly-
coupled systems. Therefore, the focus of transaction scheduling work for distributed networked
systems in the literature is on how to find the shared objects needed by a transaction efficiently
from the remote nodes and provide consistency of the objects after transactions commit and abort.
We then talk about transaction scheduling problem in NUMA systems in Section 5. For NUMA
systems, we talk about providing consistency to the objects in a load balanced way. Consistency
algorithms are important because the makespan of the transaction scheduling problem in distributed
networked and NUMA systems relies on how efficiently objects are moved to the nodes that need
them (or how efficiently transactions are moved to the nodes where the required object reside).
We then outline future research directions and conclude in Section 6. Note that there has been a
significant volume of work in the literature related to TM and we intend to cover only the work on
scheduling algorithms.

2 Transaction Scheduling Problem

Consider a set of M ≥ 1 transactions T = {T1, T2, . . . , TM}, one transaction each in M different
threads P = {P1, . . . , PM}, and a set of s ≥ 1 shared resources R = {R1, R2, . . . , Rs}. Since there
is only one transaction in each thread, we call this problem the one-shot transaction scheduling
problem. Each transaction is a sequence of actions (or operations) that is either a read or a write
to some shared resource Ri, 1 ≤ i ≤ s. The sequence of actions in a transaction must be atomic:
all actions of a transaction are guaranteed to either completely occur or have no effects at all. A
transaction after it is issued and starts execution, it completes either with a commit or an abort. A
transaction is pending after its first action until its last action; it takes no further actions after a
commit or an abort. A pending transaction can restart multiple times until it eventually commits.
The first action of a transaction must be a read or a write and its last action is either a commit or
an abort.

Concurrent write-write actions or read-write actions to same shared objects by two or more
transactions cause conflicts between transactions. If a transaction conflicts then it either aborts or
it may commit and force all other conflicting transactions to abort. In eager conflict management
TM systems, conflicts are resolved as soon as they are detected, whereas in lazy conflict management
TM systems, conflict detection and resolution process is deferred to the end of a transaction. An

ACM SIGACT News 5 June 2014 Vol. 45, No. 2

execution schedule is called greedy if a transaction aborts due to conflicts it then immediately
restarts its execution and attempts to commit again.

Each transaction Ti ∈ T has execution time duration τi > 0. The execution time is the
total number of discrete time steps that the transaction requires to commit uninterrupted from
the moment it starts. Let τmax := maxi τi be the execution time of the longest transaction, and
τmin := mini τi be the execution time of the shortest transaction. A resource can be read in parallel
by arbitrarily many transactions. A transaction is called read-only if it only reads the shared
resources, otherwise it is a writing transaction.

The goal is to come up with a scheduling algorithm A for the transactions in the set T such
that makespan(A, T) is minimized. Here makespan(A, T) denotes the completion time of all the
transactions under A, that is the latest time at which any transaction in T commits. The makespan
of A for T can be compared to the makespan makespan(opt, T) of the optimal offline scheduling
algorithm opt for T to obtain the competitive ratio of A for T . The competitive ratio of A for any
workload T is maxT

makespan(A,T)
makespan(opt,T) which is the maximum over all T . Note that the makespan

and the competitive ratio primarily depend on the workload − the set of transactions, along with
their arrival times, execution time duration, and resources they read and modify [8]. Therefore,
the one-shot model described above is general enough to extend to different variations introducing
some restrictions; we will discuss some of them in Section 3.

Let R(Ti) denote the set of resources used by a transaction Ti. We have that R(Ti) = Rw(Ti)∪
Rr(Ti), where Rw(Ti) are the resources written by Ti and Rr(Ti) are the resources read by Ti.
Two transactions Ti and Tj conflict if at least one of them writes on a common resource, i.e., ∃R
such that R ∈ (Rw(Ti) ∩ R(Tj)) ∪ (R(Ti) ∩ Rw(Ti)). We can now define the conflict graph for a
set of transactions which models any transaction scheduling problem. In the conflict graph, each
node represents a transaction and each edge represents a conflict in accessing resources between the
adjacent transactions. Formally, for any set of transactions T , the conflict graph G(T) = (V,E)
has as nodes the transactions, V = T , and (Ti, Tj) ∈ E for any two transactions Ti, Tj that conflict.
We now provide the definition of pending commit property.

Definition 1 (pending commit property [36]). A transaction scheduling algorithm obeys the pend-
ing commit property if, whenever there are pending transactions, some running transaction T will
execute uninterrupted until it commits.

The above description of the transaction scheduling problem applies to tightly-coupled systems.
In distributed networked systems, transactions in T are in the network nodes or processors (one
transaction each in M different processors). It is assumed that there is a shared memory which is
split among the processors. Each processor has its own cache, where copies of objects (individual
entries at the shared resources) reside. A transaction may consist of multiple shared objects. When
a transaction running at a processor node issues a read or write operation for a shared memory
location, the data object at that location is loaded into the processor-local cache. Some of the shared
objects needed by a transaction may be in the shared memory of the node which is executing that
transaction and some of the shared objects may be in the shared memory of other nodes. To
be able to execute the transaction, either the shared objects in other nodes need to be moved
to the node where the transaction is currently executing or the transaction needs to be moved
to the node where the shared object needed by that transaction currently resides. This decision
depends on the implementation technique used. In a data-flow implementation [46], transactions
are immobile and objects are moved to nodes that need them. In a control-flow implementation

ACM SIGACT News 6 June 2014 Vol. 45, No. 2

[65], objects are immobile and transactions are moved to the nodes when objects reside. In a
hybrid implementation, what to move, transactions or objects, is determined using some criteria
minimizing some performance metric.

In NUMA systems, the cost of accessing shared resources is asymmetric across different pro-
cessors (symmetric communication within the cores of the same processor and asymmetric com-
munication between different processors), in contrast to tightly-coupled systems where the cost is
assumed to be symmetric.

3 Tightly-coupled Systems

Tightly-coupled systems represent the typical scenario of a multicore chip with multilevel cache
organization, where the lower level caches are distinct to each processor, while the highest level
cache is common to all the cores in the chip (see left of Fig. 1). Communication costs between the
processors are symmetric. We start with describing the related work in the literature, and then
present high level details of our work on obtaining new efficient scheduling algorithms and their
experimental evaluations.

Most of the algorithms proposed in the literature [3, 27, 35, 44, 61, 68, 69, 87] for the trans-
action scheduling problem (Section 2) have been assessed only experimentally by using specific
benchmarks. Guerraoui et al. [36] were the first to develop a scheduling algorithm which ex-
hibits non-trivial provable worst-case guarantees along with good practical performance. Their
Greedy scheduling algorithm decides in favor of old transactions using timestamps and achieves
O(s2) competitive ratio in comparison to the optimal off-line scheduling algorithm for n concurrent
transactions that share s resources, and at the same time has good empirical performance. They
experimented with Greedy in DSTM [44] using the list and red-black tree benchmarks and con-
cluded that it achieves performance comparable to other scheduling algorithms like Polka [68] and
Aggressive [69] along with its provable worst-case guarantees. Later, Guerraoui et al. [34] studied
the impact of transaction failures on transaction scheduling. They presented the algorithm FT-
Greedy and proved an O(k · s2) competitive ratio when some running transaction may fail at most
k times and then eventually commits.

ACM SIGACT News 7 June 2014 Vol. 45, No. 2

Algorithm Model Competitive ratio Deterministic/
Randomized

Assumptions

Serializer [27], ATS [87] One-shot Θ(min{s,M}) [6, 28] Deterministic -
Polka [68], SizeMatters [61] One-shot Ω(min{s,M}) [6, 70] Deterministic -
Restart [28], SoA [3] One-shot Θ(min{s,M}) [6, 8] Deterministic -
Greedy [36] One-shot O(s2) [36] Deterministic Unit length transac-

tions
FTGreedy [34] One-shot O(k · s2) [34] Deterministic Transactions can fail
Greedy [36] One-shot Θ(s) [6] Deterministic -
FTGreedy [34] One-shot Θ(k · s) [6] Deterministic Transactions can fail
Phases [6] One-shot O(max{s, k log k})[6] Randomized Unit length transac-

tions
RandomizedRounds [70] One-shot O(C · logM) [70] Randomized Equal length transac-

tions
CommitRounds [70] One-shot O(min{s,M}) [6, 70] Deterministic Equal length transac-

tions
Bimodal [8] One-shot Θ(s) [8] Deterministic Bimodal workloads
Clairvoyant [73] One-shot O(

√
s) [73] Deterministic Balanced workloads

Non-Clairvoyant [73] One-shot O(
√
s · logM) [73] Randomized Balanced workloads

Clairvoyant [73] One-shot O(k ·
√
s) [73] Deterministic Transactions can fail

Non-Clairvoyant [73] One-shot O(k ·
√
s · logM) [73] Randomized Transactions can fail

Offline-Greedy [75] Window O(s+ log(MN)) [75] Randomized Equal length transac-
tions; conflict graph is
known

Online-Greedy [75] Window O(s · log(MN) +
log2(MN)) [75]

Randomized Equal length transac-
tions; conflict graph is
not known

Offline-Greedy [75] Window O(k · (s+ log(MN)))
[75]

Randomized Transactions can fail

Online-Greedy [75] Window O(k · (s · log(MN) +
log2(MN))) [75]

Randomized Transactions can fail

Table 1: Comparison of transaction scheduling algorithms, where C denotes the number of conflicts
and it can be as much as the number of shared resources s, k denotes the number of times a
transaction can fail, M denotes the number of different threads (or cores), and N denotes the
number of transactions in each thread. The assumptions of the algorithms for the failure-free case
are applied also to their versions for transaction failures.

Several other algorithms have also been proposed for the efficient transaction scheduling and the
performance of some of them has been analyzed formally [6, 8, 28, 70]. The detailed comparison of
the results and their properties are listed in Table 1. Attiya et al. [6] improved the competitive ratio
of Greedy to O(s) and of FTGreedy to O(k · s), and proved a matching lower bound of Ω(s) (Ω(k · s)
when transactions may fail) for any deterministic work-conserving algorithm which schedules as
many transactions as possible (by choosing a maximal independent set of transactions at each time
step). They also gave a randomized scheduling algorithm Phases that achieves O(max{s, k log k})
competitive ratio for the special case of unit length transactions in which a transaction may fail

ACM SIGACT News 8 June 2014 Vol. 45, No. 2

at most k times before it eventually commits. Schneider and Wattenhofer [70] proposed an algo-
rithm, called RandomizedRounds, which produces a O(C · logM)-competitive schedule with high
probability, for the transaction scheduling problem with C conflicts (assuming unit delays for trans-
actions). They also gave a deterministic algorithm CommitRounds with O(min{s,M}) competitive
ratio. Later, Attiya et al. [8] proposed a Θ(s)-competitive algorithm for the one-shot scheduling
problem in bimodal workloads. A workload is called bimodal if it contains only early-write and
read-only transactions; a transaction is called early-write if the time from its first write access until
its completion is at least half of its duration [8]. Hasenfratz et al. [41] studied different schedulers
to adapt the load in STM systems based on contention. The model in [6, 8] is non-clairvoyant in
the sense that it requires no prior knowledge about the transactions while they are executed. The
model used in [70] is based on the degree of a transaction (i.e., neighborhood size) in the conflict
graph G(T) of transactions.

Schneider and Wattenhofer [70] proved that the scheduling algorithms Polka [68] and SizeMatters
[61] are Ω(M)-competitive. Attiya and Milani [8] showed that Steal-on-Abort (SoA) [3] and Serializer
[27] algorithms are Ω(M)-competitive. Moreover, Dragojević et al. [28] proved that Serializer [27]
and adaptive transaction scheduling (ATS) [87] algorithms are O(M)-competitive. Attiya et al. [6]
proved that every deterministic scheduling algorithm is Ω(s)-competitive. Combining all these
results, we obtain the bounds listed in Table 1 for these algorithms.

We provided novel techniques and bounds in [71–73, 75, 80] for the formal performance analysis
of transaction scheduling algorithms with respect to the makespan in tightly-coupled systems. At
the same time we have evaluated the performance of the scheduling algorithms experimentally
for other performance metrics, such as performance throughout, as well. We provide two main
scheduling models, the balanced workload model and the window-based execution model. Both of
these models aim at improving the previous formal bounds relating the makespan performance
of TM to the number of resources. In the balanced workload model, we give sub-linear bounds
with respect to the number of resources for a simple restricted version of the one-shot scheduling
problem of Section 2. In the window-based model, we actually give an alternative bound based on
the metric of conflict number C which may be smaller than the number of resources for an extended
version of the one-shot problem of Section 2.

3.1 Balanced Workloads

We considered the transaction scheduling problem in the context of balanced workloads in [71, 73].
A workload is called balanced if the number of write operations a transaction performs is a constant
fraction of the total number of read and write operations of that transaction. We considered the one-
shot model of M ≥ 1 transactions (Section 2) with two additional fairly minimalistic assumptions,
which we call the balanced transaction scheduling problem (the bimodal scenario of Attiya and
Milani [8] also uses some restrictions on when a writing transaction can actually write). Specially,
the two assumptions are that each transaction Ti should know (i) its execution time duration τi,
and (ii) the number of shared resources it accesses. Let R(Ti) denote the set of resources used by
a transaction Ti. We can write R(Ti) = Rw(Ti) ∪ Rr(Ti), where Rw(Ti) are the resources which
are to be written by Ti and Rr(Ti) are the resources to be read by Ti. The balancing ratio of

Ti is given as β(Ti) = |Rw(Ti)|
|R(Ti)| . For a read-only transaction β(Ti) = 0; for a writing transaction

1
s ≤ β(Ti) ≤ 1, where s is the number of shared resources. The global balancing ratio can be
defined as β := min(Ti∈T)∧(|Rw(Ti)|>0) β(Ti), which is the minimum of all β(Ti). A workload (set of

ACM SIGACT News 9 June 2014 Vol. 45, No. 2

Algorithm 1: A generic balanced transaction scheduling algorithm

Input: A set T of M ≥ 1 transactions with global balancing ratio β;
Output: A greedy execution schedule for the transactions in T ;

1 Divide time into discrete time steps ;
2 Divide writing transactions into ` groups A0, A1, . . . , A`−1 according to their execution time

durations such that Ai contains transactions with τ ∈ [2i · τmin, (2
i+1 · τmin − 1)]; put read-only

transactions in a special group B;

3 Divide each group Ai again into κ = dlog se+ 1 subgroups A0
i , A

1
i , . . . , A

κ−1
i according to the

number of shared resources they access such that Aji contains transactions with
R(Ti) ∈ [2j , 2j+1 − 1];

4 Order the groups and subgroups such that Aji < Alk if i < k or i = k ∧ j < l; assign special group B
the highest order;

5 Resolve conflicts, if any, among transactions in groups and subgroups, at each time step based on
some conflict resolution mechanism;

transactions) T is called balanced if β = Θ(1).
We give an outline of the scheduling approach to solve the balanced transaction scheduling

problem in Algorithm 1. Let ` = dlog(τmax
τmin

)e+1. The algorithm works by dividing the transactions
into groups and subgroups and ordering them as mentioned in Lines 2–4 of Algorithm 1 and
resolving conflicts, if any, that arise in each time step of the execution using an appropriate conflict
resolution mechanism. We presented in [71, 73] two different versions of Algorithm 1 based on two
different conflict resolution mechanisms applied in Line 5 of Algorithm 1.

The first version, called Clairvoyant, uses an idea of assigning a priority level to the pending
transactions at any time step t which determines which transactions commit and which transactions
abort. The priority level is either high (1) or low (0). Therefore, transactions in lower order
subgroups (groups) have always higher priority than higher order subgroups (groups). In conflicts,
high priority transactions (transactions in lower order groups and subgroups) abort low priority
transactions (transactions in higher order groups and subgroups) and conflicts between transactions
of the same priority level are resolved arbitrarily by computing a maximal independent set in the
conflict graph of pending transactions. This decision is made in every time step of the execution.
The separation of transactions in groups and subgroups helps in resolving the transaction conflicts
efficiently so that tight competitive ratio bounds can be obtained.

The second version, called Non-Clairvoyant, uses an idea of resolving the conflicts in every time
step based on the ordering of the groups and subgroups similar to Clairvoyant such that lower order
subgroups (groups) have always higher priority than higher order subgroups (groups). However,
when transactions in the same subgroup conflict, in contrast to the maximal independent set
approach used in Clairvoyant, conflicts are resolved according to discrete random priority numbers.
A transaction Ti, as soon as it starts execution, chooses a discrete priority number r(Ti) uniformly
at random in the interval [1,M] and the transaction with small priority number wins at the time of
conflict [70]. When a transaction aborts and restarts again, it does not retain the previous priority
number as used in Greedy but chooses a discrete priority number again uniformly at random from
the interval [1,M].

Theorem 3.1. For any balanced workload with β = Θ(1) and when ` = O(1), Algorithm 1 has
competitive ratio O(

√
s · C(M)), where C(M) is a factor that depends on the conflict resolution

ACM SIGACT News 10 June 2014 Vol. 45, No. 2

mechanism used in Line 5 of the algorithm.

Proof (sketch). We start with the highlevel overview of the proof and later present details of the
competitive ratio computation. The idea is to first consider the competitive ratio for a subgroup Aji
and then extend it for the competitive ratio of a group Ai. After the competitive ratio for a group
is multiplied by the number of groups `, this will give the desired result for balanced transactions
with almost equal time durations.

For transactions in a subgroup Aji , we obtain two different competitive ratios. The first com-
petitive ratio is obtained through the upper and lower bounds based on the degree of a transaction
in the conflict graph G(Aji) of the transactions in that subgroup. The upper bound is obtained
by multiplying the maximum number of transactions that write to a resource and the maximum
number of resources needed by any transaction in Aji . The lower bound is given by the maximum

number of transactions in Aji that write to a resource because they conflict in accessing a shared
resource and they need to be serialized to successfully commit in the shortest possible time.

The second competitive ratio is obtained through the upper and lower bounds based on the
pending commit property (Definition 1) and balancing ratio properties for the transactions in that
subgroup. The pending commit property provides us the upper bound as |Aji | transactions in Aji
are executed sequentially in the worst-case. The balancing ratio property provides us the lower
bound as it determines the minimum number of transactions in Aji that conflict with each other
while accessing a particular resource. These minimum number of transactions need to be serialized
to commit them in the shortest possible time.

We now provide the details on the computation of these competitive ratios. For the competitive
ratio based on the degree of a transaction, let γ be the maximum number of transactions in Aji
that write to any resource in R. All these γ transactions in Aji have to be serialized because they

all conflict with each other in accessing the common resource; this gives the lower bound of γ · τ jmin.

Here τ jmin denotes the execution time of the shortest transaction in Aji . The upper bound cannot

be more than (sjmax · γ + 1) · τ jmax ·C(M), where sjmax is the maximum number of resources needed
by any transaction T ∈ Aji , τ

j
max is the execution time of the longest transaction in Aji , and C(M)

is a factor that depends on the conflict resolution mechanism used in Line 5 of Algorithm 1 (we
give the precise value of C(M) later).

For the other competitive ratio, the upper bound is at most |Aji | ·τ
j
max ·C(M) due to the pending

commit property which, in the worst-case, serializes the transactions of Aji . The corresponding lower

bound is at least
|Aj

i |·β·s
j
max

2·s · τ jmin using the balancing ratio property. This is because, according to

the definition of balancing ratio, each transaction T ∈ Aji accesses at least |Rw(T)| ≥ β · sjmax/2

resources. Therefore, the minimum number of transactions in Aji that access a particular resource

R ∈ R is at least the ratio of the sum of |Rw(T)| among all T ∈ Aji to the total number of resources

s; all these transactions of Aji accessing R should be serialized because they conflict with each
other. The balancing ratio property is very useful here, otherwise this lower bound claim would
not have been possible to achieve.

As τ jmax/τ
j
min ≤ 2 for the transactions in any subgroup Aji , we obtain two independent competi-

tive ratios for Aji combining respective upper and lower bounds. Combining these two competitive

ratios, we obtain 4 ·min
{
sjmax,

s/β

sjmax

}
· C(M) for the competitive ratio of transactions in Aji . This

competitive ratio bound forms a bitonic sequence of κ competitive ratios for κ subgroups of trans-
actions (Line 3 of Algorithm 1) in any group Ai, and this sequence of competitive ratios has a single

ACM SIGACT News 11 June 2014 Vol. 45, No. 2

Figure 2: Execution window model for TM. Left: before execution; Right: after execution.

pick at the subgroup Ayi with y = log(s/β)/2. Therefore, summing the sequence of κ competitive
ratios, we obtain the competitive ratio of O(

√
s/β ·C(M)) for group Ai consisting of κ subgroups.

For ` groups, we have O(` ·
√
s/β · C(M)).

Consider the conflict graph G(T) of a balanced transaction scheduling problem with a set T
of M transactions. Let dT,max be the maximum number of transactions that conflict with some
transaction T ∈ T . The factor C(M) measures the maximum ratio of the total execution time of
the transactions in T using some conflict resolution mechanism and the execution time obtained
serializing dT,max transactions. As shown in [71, 73], the factor C(M) due to the conflict resolution
mechanism based on maximal independent set of pending transactions used in Clairvoyant is O(1)
and the conflict resolution mechanism based on discrete priority numbers used in Non-Clairvoyant is
O(logM) with high probability. Therefore, Algorithm 1 is O(

√
s)-competitive in the first case but

it needs to know a priori the conflict graph of transactions at each time step of execution to resolve
conflicts. Algorithm 1 is O(

√
s · logM)-competitive, with high probability, in the second case,

without the explicit knowledge of the conflicts. In other words, we removed the necessity of the
global conflict knowledge in Non-Clairvoyant in the expense of O(logM) increase in the competitive
ratio, with high probability. When transactions in T can fail at most k times, competitive ratio
bounds of our algorithms increase proportionally with k. Therefore, Algorithm 1 is the first sub-
linear algorithm for a simple restricted version of the one-shot scheduling problem given in Section
2.

The balanced version of the one-shot scheduling problem leads us to obtain the inapproximabil-
ity result for the transaction scheduling problem using a reduction from the graph coloring problem
given in [50].

Theorem 3.2. Unless NP ⊆ ZPP, there does not exist a polynomial time algorithm for every
instance with β = 1 and ` = 1 of the balanced transaction scheduling problem that can achieve
competitive ratio smaller than O

(
(
√
s)1−ε

)
for any constant ε > 0,

This implies that the O(
√
s) bound given above for β = Θ(1) and ` = O(1) is very close to

optimal as ε approaches 0.

3.2 Window-Based Workloads

We considered the transaction scheduling problem for M × N execution windows of transactions
with M ≥ 1 threads and N transactions per thread (see left of Fig. 2) in [75, 80]. Each window
W consists of a set of transactions T(W) = {(T11, . . . , T1N), (T21, . . . , T2N), . . . , (TM1, . . . , TMN)},

ACM SIGACT News 12 June 2014 Vol. 45, No. 2

where each thread Pi issues N transactions Ti1, . . . , TiN in sequence, so that Tij is issued as soon
as Ti(j−1) has committed. This departs from the one-shot model given in Section 2 where N = 1
(one transaction per thread). However, similar to the one-shot model, transactions share a set of
s ≥ 1 shared resources R, i.e. R(Ti) denotes the resources read or written by Ti. For the purpose
of analysis, we assume that all transactions have the same execution time duration τ = τij and this
time does not change over time.

This execution window model is useful in many real-world scenarios. Consider for an example
the scenario in which each thread needs to execute a job that comprises of many transactions. These
transactions will be executed one after another on the processor core where the thread is running
and the thread tries to execute Ti as soon as Ti−1 has finished execution and successfully commit.
Note that jobs in different threads may have different number of transactions. This execution
window model can successfully handle such scenarios as well.

Assuming that each transaction conflicts with at most C other transactions inside the M ×N
window, a trivial greedy contention manager can schedule them within τCN time. Our goal is
to solve this window transaction scheduling problem minimizing the makespan. Algorithm 2 is an
outline of the solution to this window transaction scheduling problem. The algorithm works by
dividing time into time frames, denoted as Fij , of size Φ = O(τ ·log(MN)·C(M,N)) time steps based
on the values of τ,M , and N , where C(M,N) is a factor that depends on the conflict resolution
mechanism used in Line 4 of Algorithm 2 and measures the maximum ratio of the execution times
of the transactions inside each frame similar to the maximum ratio of the execution times of the
transactions inside a subgroup in balanced workloads (we give precise value of C(M,N) later). The
time frames are designed in such a way that transactions that become high priority in the beginning
of any time frame finish execution and commit before the end of the time frame. To guarantee this
property, we assign a random interval qi between 0 to C/ log(MN)−1 frames uniformly at random
to each thread i, 1 ≤ i ≤M. During qi, all transactions Tij of the thread i are in low priority (Line 2
of Algorithm 2). Here C plays the important role in determining how much randomization is needed
in the beginning of the execution. After that transactions in each thread i become high priority
one after another in the beginning of every successive frame and remain in high priority until they
commit (Line 3 of Algorithm 2). In other words, the first transaction in thread i becomes high
priority in the beginning of first frame after the random interval for thread i, the second transaction
becomes high priority in the beginning of the second frame after the random interval for thread
i, and so on. We guarantee in Algorithm 2 that at most O(log(MN)) transactions (from all the
threads) become high priority, with high probability, at the beginning of any frame such that they
will be committed before the end of that time frame. The use of randomization interval qi helps
us to minimize the transaction conflicts by forcing each transaction to become high priority in an
appropriate randomly selected frame so that transaction will be executed in a way that is shown
in right of Fig. 2.

Theorem 3.3. For any execution window W with equal length transactions, Algorithm 2 has
competitive ratio O((s + log(MN)) · C(M,N)), with high probability, where C(M,N) is a factor
due to the conflict resolution mechanism used in Line 4 of the algorithm.

Proof (sketch). Note that Algorithm 2 needs total N ′ = (C/ log(MN) + N) · O(τ · log(MN) ·
C(M,N)) = O(τ · (C + N log(MN)) · C(M,N)) time steps to finish all the transactions. This is
because we have up to C/ log(MN) frames that are used in randomization interval and N frames
after that for N transactions in any thread with Φ = O(τ ·log(MN)·C(M,N)) being the size of each

ACM SIGACT News 13 June 2014 Vol. 45, No. 2

Algorithm 2: A generic window transaction scheduling algorithm

Input: An M ×N window of transactions W with M ≥ 1 threads of N transactions, where C is the
maximum number of transactions in W that any transaction conflicts with;

Output: A greedy execution schedule for the transactions in W ;

1 Divide time into poly-logarithmic (with respect to M,N,C) time duration frames;
2 Assign a random interval of qi ∈ [0, C/ ln(MN)− 1] frames to each thread i, during which all

transactions Tij of the thread are in low priority;
3 After interval qi finishes, each transaction Tij becomes high priority in frame Fij = qi + (j − 1);
4 Resolve conflicts, if any, among transactions at each time step based on some conflict resolution

mechanism;

frame. Moreover, the use of randomized intervals guarantees thatO(log(MN)) transactions become
high priority in the beginning of each frame, with high probability, and they commit before the frame
duration expires. Let γmax := max1≤j≤s γ(Rj), where γ(Rj) denotes the number of transactions
that write to resource Rj . Let λmax := maxi λ(Ti), where λ(Ti) = |{R : R ∈ R(Ti) ∧ γ(R) ≥ 1}|
denotes the number of resources that cause conflicts to any transaction Ti ∈ T(W). We can relate
C with γmax and λmax through the relation γmax− 1 ≤ C ≤ λmax · γmax. We can relate the optimal
time to execute all the transactions in T(W) to τ , γmax, and N such that the optimal time is at
least τ · max{γmax, N}. Moreover, we can show that λmax ≤ s. Combining all these results, we
obtain the desired O((s+ log(MN)) · C(M,N)) competitive ratio, with high probability.

We presented in [75, 80] three different variants of Algorithm 2 based on three different conflict
resolution mechanisms (Line 4 of Algorithm 2). In order to resolve conflicts within a frame in the
first variant called Offline-Greedy, a maximal independent set is chosen, similar to Clairvoyant, from
the conflict subgraph induced by the high priority transactions. The effect of this approach is that
O(log(MN)) transactions that become high priority in any frame Fij finish execution (and com-
mit) in O(log(MN)) time steps, with high probability, such that C(M,N) = O(1). Therefore, the
competitive ratio for Offline-Greedy is O((s+ log(MN)), with high probability. The second variant
called Online-Greedy is only a O(log(MN)) factor worse compared to Offline-Greedy, but does not
require knowledge of the conflict graph (due to the use of discrete random priorities). Nevertheless,
it still relies on knowledge of C in the window. One transaction finishes in O(log(MN)) time steps,
with high probability, in Online-Greedy, requiring O(log2(MN)) time steps for O(log(MN)) trans-
action in a frame due to the conflict resolution mechanism used within a frame that is based on
discrete random priority numbers similar to Non-Clairvoyant. Therefore, C(M,N) = O(log(MN))
for Online-Greedy. The third variant called Adaptive-Greedy is an alternative algorithm which dy-
namically guesses C. The benefit is that these algorithms exhibit worst-case competitive ratios of
almost O(s) for M ×N windows of transactions in contrast to previous algorithms which achieve
O(s) competitive ratio only for the one-shot model of Section 2. When transactions in T(W) can
fail at most k times, competitive ratio bounds of our algorithms increase proportionally with k.

Experiments: We performed experimental evaluation of several variants of Algorithm 2 in [72,
75]. In the experiments, we considered Algorithm 2 variants for eager conflict management systems
(eager conflict management systems handle conflicts as soon as they are detected) and performed
the evaluation in DSTM2 [43], an eager STM system. We used two simple benchmarks: the
linked list (List) and red-black tree (RBTree), and a sophisticated benchmark vacation (Vacation)

ACM SIGACT News 14 June 2014 Vol. 45, No. 2

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 (

x
10

3 /s
ec

)

Number of threads

List Benchmark

 2

 4

 6

 8

 10

 12

1 2 4 8 16C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 (

x
10

3 /s
ec

)

Number of threads

RBTree Benchmark

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 2 4 8 16C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 (

x
10

3 /s
ec

)

Number of threads

Vacation Benchmark

Online-Dynamic
Adaptive-Improved-Dynamic

Polka
Greedy
Priority

Serializer
RandomizedRounds

Figure 3: Comparison of performance throughput results in List, RBTree, and Vacation benchmarks
in high contention. Higher is better.

from the STAMP suite [18, 43, 44]. These benchmarks are configured to generate large amounts of
transactional conflicts (i.e., high contention scenario). The throughput results of several algorithms
are given in Fig. 3. We ran these specific experiments for 10 seconds using up to 16 threads and
the data plotted are the average of 6 experiments.

We did not use the Offline-Greedy algorithm in evaluation because it resolves conflicts based
on the complete knowledge of the conflict graph in every time step of execution, an assumption
which may not be practical. In the experiments, Online-Dynamic is a new improved version of
Online-Greedy algorithm where the frames are dynamically contracted or expanded based on the
amount of contention inside the frame. Adaptive-Improved-Dynamic is the variant of Adaptive-
Greedy where frames are dynamically contracted or expanded similar to Online-Dynamic. Perfor-
mance variance is generally minimal between the two best performing strategies Online-Dynamic and
Adaptive-Improved-Dynamic. Moreover, we compared our window-based algorithms with Polka [68]
(the published overall best contention manager, but does not have the formal analysis of the upper
bound), Greedy [36] (the first contention manager which has non-trivial theoretical provable proper-
ties), Priority [68] (a simple static priority-based contention manager), Serializer [27] (a serialization
based scheduler), and RandomizedRounds [70] (a random priority-based contention manager). The
conclusion from Fig. 3 is that Algorithm 2 variants improve throughput over Greedy and achieve
throughput that is comparable to Polka in almost all the benchmarks that we considered. The
evaluation shows the benefits of our algorithms in practice along with their non-trivial theoretical
guarantees.

The transaction scheduling problem is also studied in several other papers, e.g. [9, 11–13, 58,
67, 82], for TM implementations in both hardware and software. However, they do not provide the
formal analysis and the performance of their techniques is evaluated through benchmarks only.

4 Distributed Networked Systems

Distributed networked systems represent the scenario of completely decentralized distributed shared
memory where processors are placed in a network which communicate through a message passing
environment. Here, the network is represented with an arbitrary weighted graph G = (V,E,w),
where V is the set of nodes (machines), E is the set edges (interconnection links between machines),
and w is a weight function in E which reflects physical distances and delays. This model is more
abstract than the hierarchical multilevel cache, because the network could be any arbitrary topology
not restricted to any specific multiprocessor architecture. Thus, it models distributed networks over

ACM SIGACT News 15 June 2014 Vol. 45, No. 2

large areas. To solve the transaction scheduling problem in distributed systems, nodes need to use
a transaction scheduling algorithm to resolve conflicts that arise while executing transactions. To
support transaction scheduling satisfying atomicity, each node is enriched with a transactional
memory proxy module that interacts with the local node and also with the proxies at other nodes
[46]. The proxy module is asked to open the shared object when it is needed for reading or writing
by a transaction. The proxy module checks whether the object is at the local cache, otherwise it
calls an appropriate algorithm to get that object from the node that has it. At the commit time of
a transaction, proxy checks whether any object that is read and written by that transaction was
not invalidated by other transactions that are committed from other nodes. If that is the case, the
proxy asks the transaction to abort, otherwise it allows the transaction to commit. The aborted
transactions restart their execution and try to commit again.

When the proxy module of a node receives a request (from a remote node) for the shared object
that is at the local node, it checks whether a local pending transaction using it. If the object
is in use, the proxy can give the object to the requester aborting the local transaction or delay
the response for a while so that local transaction can commit. This decision is done through the
scheduling algorithm used in the nodes.

Several researchers [14, 23, 53, 59] presented techniques to implement TM in distributed net-
worked systems. Manassiev et al. [59] presented the lazy conflict detection and handling algorithm
based on global lock. Kotselidis et al. [53] presented the serialization/multiple lease based algo-
rithm. Bocchino et al. [14] and Couceiro et al. [14, 23] presented the commit-time broadcasting
based algorithm. Control-flow based distributed TM implementation is studied by Saad and Ravin-
dran [65]. Romano et al. [63] discussed the use of the TM programming model in the context of
the cloud computing paradigm and posed several open problems. Kim and Ravindran [51] studied
transaction scheduling in replicated data-flow based distributed TM systems. Saad and Ravin-
dran [65] provided a Java framework implementation, called HyFlow, for distributed TM systems.
Recently, Hendler et al. [42] studied a lease based hybrid distributed software transactional mem-
ory implementation which dynamically determines whether to migrate transactions to the nodes
that own the leases, or to demand the acquisition of these leases by the node that originated the
transaction.

As transactions are scheduled and conflicts are resolved using a scheduling algorithm in each
network node, the focus in the TM implementation in distributed networked systems is on how
to find the shared objects needed by transactions efficiently from the remote nodes and provide
the consistency of the objects after transactions commit and abort. These previous algorithms
[14, 23, 53, 59, 63] essentially try to provide consistency of the shared objects. However, they
either use global lock, serialization lease, or commit-time broadcasting technique which do not
scale well with the size of the network [7]. Moreover, they do not provide the formal analysis
of the cost incurred by their algorithms to support distributed transaction scheduling and the
performance of these techniques are evaluated through experiments only. Thus, it is of great
importance to design consistency algorithms that scale well with the size, complexity, and network
kind of the distributed systems, and also provide reasonable theoretical and empirical performance.
We provide an overview of the work on designing scalable consistency algorithms for supporting
TM in distributed networked systems.

ACM SIGACT News 16 June 2014 Vol. 45, No. 2

Algorithm stretch Network Runs on
sequential one-shot dynamic

Arrow [25] O(SST) [25] O(SST ·log l) [47] O(SST · logD) [54] General Spanning tree
Relay [88] O(SST) [88] O(SST ·log l) [47] O(SST · logD) [89] General Spanning tree

Combine [7] O(SOT) [7] O(SOT ·log l) [47] O(SOT ·logD) [54] General Overlay tree
Combine [7] O(logD) [76] O(logD) [76] O(logD) [76] Constant

dou-
bling

Hierarchical direc-
tory (independent
sets)

Ballistic [46] O(logD) [46] O(logD) [46] O(logD) [76] Constant
dou-
bling

Hierarchical direc-
tory (independent
sets)

Spiral [79] O(log2 n ·
min{log n, logD})
[79]

O(log2 n ·
min{log n, logD})
[79]

O(log2 n ·
min{log n, logD})
[76]

General Hierarchical di-
rectory (sparse
covers)

Table 2: Comparison of consistency algorithms, where SST = O(D) is the stretch of the spanning
tree, SOT = O(D) is the stretch of the overlay tree, l ≤ n is the number of move operations in
one-shot executions, n is the number of nodes, and D is the diameter of the network.

Herlihy and Sun [46] proposed Ballistic consistency algorithm. This algorithm is hierarchial:
network nodes are organized as clusters at different levels. They evaluated the formal performance
of Ballistic by its stretch (i.e., the competitive ratio on distances): each time a node issues a request
for a remote shared object, compute the ratio of the algorithm’s communication cost for that
request to the optimal communication cost for that request. The optimal communication cost is
computed based on the shortest path distances between the requesting node and the node in which
the request finds that object. In constant doubling networks, their algorithm achieves amortized
O(logD) stretch, where D is the diameter of the constant doubling network for non-overlapping
(i.e., sequential) requests to locate and move a cached copy of an object from one node to another.
In this algorithm, concurrent requests are synchronized by path reversal: when two requests meet
at some intermediate node, the second request is diverted behind the first request.

The Arrow algorithm [25] originally designed for the distributed queuing problem can also be
used as the consistency algorithm for TM in distributed systems. Zhang and Ravindran [88]
proposed the Relay consistency algorithm. Both Arrow and Relay run on a spanning tree. In Relay,
the pointers lead to the node that is currently holding the object and the pointers are changed only
after the object moves from one node to another, like the tree-based mutual exclusion algorithm
of Raymond [62]. Relay has stretch O(SST) in sequential executions, where SST is the stretch of
the pre-selected spanning tree ST . They also showed that Relay efficiently reduces the worst-case
number of total abortions of transactions to O(M) in comparison to using Arrow [25, 62], which
has an O(M2) for M transactions requesting the same object. Recently, Attiya et al. [7] proposed
Combine, which runs on an overlay tree, whose leaves are the computing nodes of the system.
They claimed that Combine avoids race conditions (missing one concurrent request by another) of
Ballistic and Relay by combining requests that overtake each other as they pass through the same
node. Combine exhibits the stretch O(SOT) in sequential executions, where SOT is the stretch of
the embedded overlay tree OT . The stretch of Arrow, Relay and Combine may be as much as the
diameter of the network. Kim and Ravindran [52] proposed a technique that improves the stretch

ACM SIGACT News 17 June 2014 Vol. 45, No. 2

of Relay to O(log n) in bimodal workloads in the worst-case and Θ(log(n−m)) in the average-case,
for n nodes and m reading transactions. Table 2 summarizes the properties of the consistency
algorithms in all possible (sequential, one-shot, and dynamic) execution scenarios. In sequential
executions, object requests do not overlap with each other, whereas object requests are issued at
the same time in one-shot executions and no further requests occur. Object requests are issued in
arbitrary moments of time in dynamic executions.

4.1 Directory-Based Approach

We presented Spiral, a novel consistency algorithm, in [79]. Spiral was designed for the data-flow
implementation of TM in distributed networked systems. Spiral supports three basic operations to
provide consistency of the shared objects: (i) publish, allowing a shared object ξ to be inserted in
the directory so that other nodes can find it; (ii) lookup, providing a read-only copy of the object ξ
to the requesting node; (iii) move, allowing the requesting node to write the object ξ locally after
the node gets it. The algorithm runs on a directory built upon a hierarchical cluster construction
we describe below.

There are h + 1 = O(logD) cluster levels in Spiral such that cluster diameters increase expo-
nentially (see Fig. 4), where D is the diameter of the network. In each cluster one node is chosen
to act as a leader which is used to communicate with different level clusters. Clusters may overlap
and the same node may act as a leader in multiple levels. At the bottom level (level 0) each cluster
consists of an individual node, while at the top level (level h) there is a single cluster for the whole
graph with a special leader node called root. Only the bottom level nodes can issue requests for the
shared objects, while the nodes in higher levels are used to propagate the requests in the graph.
The clusters are built using sparse covers obtained from a hierarchical partitioning in Gupta et
al. [37]. We obtain the directory by organizing the clusters in a logical tree structure connecting
the limited subset of leader nodes of consecutive levels starting from the lowest level and ending at
the top level.

We provide algorithm description below considering only one shared object; to support multiple
objects, the directory can be replicated appropriately. Given a shared object the algorithm main-
tains a directory path in the logical tree structure (i.e., directory). A directory path is a directed
path from the root node to the bottom-level node that owns the shared object. This path follows
(i.e., visits) the leader nodes in every level. The directory path is updated whenever the object
moves from one node to another. In order to get access to the object, each bottom level node uses
a spiral path to intersect the directory path and then reach the object. The spiral path of a node
u ∈ G is built by visiting upward the parent leader nodes in all the clusters that the node u belongs
to starting from the bottom level up to the top level. The name of the algorithm (Spiral) is inspired
by the path formed in the directory which slowly unwinds outwards while it visits cluster leaders of
higher levels which are possibly farther away from the origin node. Algorithm 3 gives an overview
of the approach.

A publish operation from any node u ∈ V is served by following the spiral path up to the root
and making each parent cluster leaders point toward child cluster leaders in its way (Lines 3, 4
of Algorithm 3). A lookup operation is served by first following the spiral path upward until it
finds a downward (i.e., directory) path and then reaching the node that has the object following
the downward pointers (Lines 5–7 of Algorithm 3). A move operation is also served similar to
lookup but while going upward following the spiral path it sets downward pointers and removes
the existing pointers while going downward following the downward path (Lines 8–10 of Algorithm

ACM SIGACT News 18 June 2014 Vol. 45, No. 2

Algorithm 3: A generic directory-based consistency algorithm for TM in distributed systems

1 Initialization:
2 Given a network graph G, develop a directory Z (a logical tree structure) based on some

hierarchical graph partitioning method and assign each cluster a leader;

3 Publish an object ξ at some node v:
4 Until a publish message from v reaches the root node of Z, visit all the parent clusters (i.e. higher

level clusters) in the spiral path of v towards root making parent cluster leaders point toward child
cluster leaders;

5 Lookup from node u for an object ξ at node v:
6 Until a lookup message from u finds a downward path in Z, visit all the parent clusters in the path

of u towards the root;
7 When the downward path is found, go to v following the pointers and send the read-only copy of ξ

to u;

8 Move from node u for an object ξ at node v:
9 Until a move message from u finds a downward path in Z, visit all the parent clusters in the path

of u towards the root making parent cluster leaders point to child cluster leaders;
10 When the downward path is found, go to v following the path but removing its pointers and send

the writable copy of ξ to u invalidating ξ from v and its read-only copies from other nodes;

((a)) Initially, node v publishes
the object

((b)) The request continues up
phase

((c)) The request continues
down phase

((d)) Object is moved directly
from v to u

Figure 4: Illustration of Spiral algorithm for a move request issued by node u for the object at node
v.

3). An execution example with a move request from node u for the shared object at node v is
depicted in Fig. 4. The move request from u goes upward following the spiral path of u until it
finds the downward pointer at u3, setting downward pointers in its way (Figs. 4(a) and 4(b)), after
that it follows the leaders v2, v1, v in the directory path to reach v, removing the existing downward
pointers in its way (Fig. 4(c)). The object is then moved to u following some shortest path in G
(Fig. 4(d)).

Spiral is suitable for arbitrary network topologies. We measure the performance of Spiral by
stretch (competitive ratio on distances) similar to previous algorithms [7, 25, 46, 88] by comparing
Spiral’s communication cost for an operation (resp. for a set of operations) to the optimal commu-
nication cost for that operation (resp. for that set of operations). We proved the following theorem
for Spiral; details can be found in [76, 77]. For the analysis, we consider the dynamic execution of
any arbitrary set of move operations that covers all possible execution scenarios including sequential
and one-shot executions

ACM SIGACT News 19 June 2014 Vol. 45, No. 2

Theorem 4.1. Spiral has O(log2 n · min{log n, logD}) stretch in any execution (sequential, one-
shot, or dynamic) for any arbitrary set of move operations.

Proof (sketch). We can prove that, in Spiral, any spiral path or directory path from any leaf
node to any level i leader node has length O(2i · log2 n). Recall that, in Spiral, each move request
is served finding a downward path at a cluster leader at some level. Therefore, for any set of move
operations, we can count the number of requests that reach any level i, 1 ≤ i ≤ h, in the directory
following their spiral paths upward before they find corresponding downward paths at that level.
The upper bound in communication cost for that level is given by summing up the spiral path length
of all the operations that reach to that level. We can also obtain a corresponding lower bound for
the requests that reach that level. The idea is that if the spiral paths of any two move requests ri
and rj issued, respectively, by the leaf nodes u and v intersect at level i, then the distance between
them in G must be at least 2i, since otherwise their spiral paths would intersect at level i − 1 or
lower. We say that two spiral paths intersect at level i if they visit the same leader node at level i
(not necessary at the same time). Now combining the upper and lower bound costs for all the levels
we obtain the desired bound of O(log2 n · logD). The log2 n factor comes from the ratio of spiral (
directory) path lengths of intersected requests with their corresponding shortest paths in G. The
O(logD) factor comes from the number of levels in the directory, as we take as overall lower bound
the maximum lower bound cost among any level. Note that the factor of O(logD) in the stretch is
very loose. Nevertheless, it is still good when D < nO(1). For D > nO(1), we can do a tight analysis
of the lower bound to obtain O(log n) instead of O(logD) in the stretch bound. Combining these
two results, we obtain the desired move stretch of O(log2 n ·min{log n, logD}).

For any publish operation, we can prove the total cost of O(D · log2 n) to serve it. Moreover, we
can prove O(log4 n) stretch for any lookup operation in Spiral algorithm. We obtain this without
considering the request sequences as we did for move operations. Our approach of using shortcut
pointers makes this possible; details can be found in [79]. Moreover, race conditions are avoided by
appropriately ordering the overlapping clusters of the same level of the directory.

To the best of our knowledge, Spiral is the first consistency algorithm for TM in distributed
systems that achieves poly-log approximation for stretch in general networks. Previous approaches,
Arrow [25], Relay [88], Combine [7], and Ballistic [46], were only for either specific network topologies
or they do not scale well in arbitrary network topologies. For example, Ballistic is only suitable for
doubling-dimension metrics, which is not general enough to cover other network topologies; further,
the spanning tree approach of Relay [88] does not perform well on trees that do not preserve the
shortest path metric, as for example, in ring networks.

Experiments: Experimental results for Spiral in real world networks for the sequential and dy-
namic execution of 10 to 10,000 move operations are given in Fig. 5. For the experimentation we
generated random networks of different sizes adapting the Erdős-Rényi model [29] (we report here
the results from the networks with 512 nodes only), where a graph G(n, ρ) is constructed connect-
ing nodes randomly such the each edge is included in G with probability 0 < ρ < 1 independent
from every other edge. The graphs we use in the experiments are generated setting ρ = 0.5. The
weight of each edge is also chosen at random, independently from the weight of every other edge,
from 1 to 10. Spiral in the figure denotes the results in a sequential execution and Spiral(t) denotes
the results in a dynamic execution in which a new move request is generated in every t steps from
a randomly chosen node in the graph. The results show that Spiral performs slightly better in

ACM SIGACT News 20 June 2014 Vol. 45, No. 2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2000 4000 6000 8000 10000

M
ov

e
co

m
pe

tit
iv

e
ra

tio

Number of move operations

Spiral
Spiral(50)
Spiral(20)

 0

 5

 10

 15

 20

 25

 2000 4000 6000 8000 10000

M
ov

e
co

m
pe

tit
iv

e
ra

tio

Number of move operations

Spiral
Arrow

Figure 5: Performance of Spiral (Left) and its comparison to Arrow (Right) for up to 10,000 move
operations in a network of 512 nodes. Lower is better. Spiral(t) denotes a dynamic execution where
a new move operation is generated in every t time steps.

terms of communication cost when there are large number of active move requests at each step
of the execution. This is because the paths used by requests become less fragmented when many
requests are issued concurrently which in turn minimizes the communication cost [78]. We also
compare the performance of Spiral with the performance of Arrow. This comparison is interesting
because Arrow uses a spanning tree that is different from the hierarchical structure used by Spiral.
The results (right of Fig. 5) show that Spiral achieves move competitive ratio that is 1.1 − 1.57
times better in comparison to Arrow. This comparable performance is due to the fact the random
network model allows for low cost spanning tree. The performance difference is significant when
we consider the execution in special networks, e.g. ring. Several other performance comparisons
results are reported in [78].

5 Non-Uniform Memory Access Systems

Multicore processor architectures provide interfaces that enable multicore chips to connect with each
other through high speed interconnect communication links, in order to form larger size multipro-
cessor systems. An example is the Intel QuickPath Interconnect (QPI) [21] which is implemented in
the Intel Pentium i7 Nehalem multicore architecture [22]. Fig. 6 illustrates an example organization
of an interconnect multiprocessor system in a 3-dimensional grid. Such large scale architectures
are suitable for high performance distributed and parallel computing. In IBM Blue Gene/L 65,000
nodes are interconnected as a 64 × 32 × 32 3-dimensional mesh or torus [1]. Recently, IBM Blue
Gene/Q integrated a 5-dimensional torus [19]. Moreover, Cray XT5 [48] is also based on a simi-
lar multiprocessor organization. These configurations are known as Non-Uniform Memory Access
(NUMA) systems where the shared memory is distributed among various processors. There are
various ways to ensure that the caches of the cores are coherent, such as snoopy bus algorithm,
or a distributed directory organization. An important characteristic is the NUMA factor which is
related to the difference in latency for accessing data from a local memory location as opposed to
a non-local one.

Wang et al. [85] evaluated several STM implementations on a big SMP machine that uses
cache coherent NUMA (ccNUMA) architecture. They concluded that latencies due to remote

ACM SIGACT News 21 June 2014 Vol. 45, No. 2

Proc Proc

Proc Proc

Memory

Proc Proc

Proc Proc

Memory

3-D Multicore Processor GridInterconnection Network

Figure 6: Multi-processor system with high speed interconnect (i.e., Intel QPI [21]).

Figure 7: Left: illustration of mesh decomposition for the 23 × 23 2-dimensional mesh. The de-
composition for level 0 and level 3 is not shown; in level 0, every node is a submesh by itself, and
in level 3 (top level) the whole mesh itself is a submesh. The arrows show the parent clusters of a
particular node u; Right: move path in the 2-dimensional mesh by MultiBend for the move request
shown in Fig. 4.

memory accesses is the key factor that influences STM performance. Lu et al. [56] proposed a
latency-based scheduling algorithm with a forecasting-based conflict prevention method to improve
the TM performance in NUMA systems. Kotselidis et al. [53] studied how to exploit STM on
clusters. They concluded that the performance depends on network congestion. Blagodurov et
al. [10] provided a case for NUMA-aware scheduling on multicore systems. However, they did
not consider implementing transactions. Calciu et al. [17] designed a family of reader-writer lock
algorithms tailored to NUMA architectures, extending the existing lock algorithms designed for
UMA architectures.

For NUMA architectures, we are interested in minimizing the communication cost, makespan,
and also the network load while executing transactions. In this direction, we give an algorithm that
minimizes simultaneously the communication cost and the network load in accessing the memory lo-
cations of the shared objects. We leave the problem of scheduling transactions minimizing makespan
in NUMA architectures as an open problem.

5.1 Load-Balanced Approach

In [74] we considered the problem of implementing a communication efficient consistency algorithm
on grid network topologies which at the same time achieves load balancing (minimizes maximum
node and edge utilization) of the network nodes and edges. This load balancing is beneficial because
the network congestion can affect the overall performance of the algorithm and sometimes it is a

ACM SIGACT News 22 June 2014 Vol. 45, No. 2

major bottleneck. For achieving simultaneously low communication cost and low congestion (i.e.,
load balancing), we applied techniques from oblivious routing [15] on d-dimensional grid network
topologies, with near optimal congestion while maintaining small stretch (competitive ratio on
distances). In particular, we combined an oblivious routing algorithm approach with the Spiral
algorithm (Section 4) to obtain the desired algorithm with poly-log approximation in stretch and
poly-log approximation in congestion (with respect to optimal edge congestion). In small (constant)
degree graphs, low edge congestion implies also low node congestion.

The algorithm MultiBend presented in [74] demonstrates that such a construction with dual
optimization in grids is feasible. MultiBend is based on an appropriate hierarchical clustering of
2-dimensional mesh networks, where each mesh of a specific size is decomposed into two types
of submeshes (clusters), type-1 and type-2 (see Fig. 7). The type-1 submeshes are obtained by
partitioning the mesh recursively into 4 submeshes by dividing each side mi of the mesh by 2 until
there is only one node in each submesh. Therefore, there are O(log n) levels of type-1 submeshes
with sizes increasing by a factor of 2 between consecutive levels starting from the lowest level,
i.e., level 0 submeshes are the individual nodes of the mesh. The type-2 submeshes are obtained
by taking the type-1 sumbeshes of that level and shifting them by −mi/2 simultaneously in both
dimensions. Some of the shifted submeshes are entirely with in the mesh and the remaining of the
shifted submeshes are partially overlapped with the original mesh. For the partially overlapped
submeshes, we keep only their intersection with the original mesh. These two types of submeshes
make it possible to serve the move and lookup operations more quickly, without increasing the
congestion. (Using only the type-1 submeshes may be significantly expensive while serving the
move and lookup operations and the use of type-2 submeshes is instrumental in controlling the
stretch while maintaining low congestion.) We obtain a directory by organizing the type-1 and
type-2 submeshes of each level in a logical tree structure similar to the one we described for Spiral
algorithm. Based on the directory we can further define paths for accessing a shared object that
take now the form of multi-bend paths (Fig. 7). From this construction, we obtained O(log n)
approximation on both load and stretch which are almost-optimal results; compare them with the
lower bounds due to Alon et al. [2] for the stretch and Maggs et al. [57] for the congestion.

The construction for a 2-dimensional mesh can be extended to a d-dimensional mesh with O(d)
different types of submeshes. Both the stretch and the load approximation become O(2d · log n)
using this construction approach which is excessively high for a large d. Therefore, the alternative
construction with O(d) different types of submeshes alleviates the problem such that the stretch
becomes O(d · log n) and the load approximation becomes O(d2 · log n). For a fixed d, these are
also constant factors from the optimal [2, 57]. Similar to the Spiral algorithm, the routing paths
when requesting an object are formed through the hierarchy of submeshes. However, to achieve
load balancing, the leader nodes in clusters are changed every time the leader is accessed. We
summarize the results below.

Theorem 5.1. In d-dimensional grid networks, MultiBend has the stretch O(d · log n) and the load
(congestion) approximation O(d2 · log n) with high probability.

Experiments: We performed experiments in a 16× 16 nodes 2-dimensional grid network to see
how the theoretical properties of MultiBend translate in practice. We compared the performance of
MultiBend with existing algorithms Arrow [25] and Ballistic [46]. The move and lookup competitive
ratios for 100 to 1,000 sequential operations are given in Fig. 8. The performance of Ballistic is

ACM SIGACT News 23 June 2014 Vol. 45, No. 2

 1

 1.5

 2

 2.5

 3

 100 200 300 400 500 600 700 800 900 1000

M
ov

e
co

m
pe

tit
iv

e
ra

tio

No. of move operations

Arrow
Ballistic

MultiBend

 1

 1.5

 2

 2.5

 3

 100 200 300 400 500 600 700 800 900 1000

Lo
ok

up
 c

om
pe

tit
iv

e
ra

tio

No. of lookup operations

Arrow
Ballistic

MultiBend

Figure 8: The stretch comparison for up to 1000 move operations (Left) and lookup operations
(Right). Lower is better.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 60 120 180 240 300 360 420 480

Lo
ad

/e
dg

e

Edges

10000 Move Operations on a Single Object

Arrow
MultiBend

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 60 120 180 240 300 360 420 480

Lo
ad

/e
dg

e

Edges

10000 Move Operations on a Single Object

Ballistic
MultiBend

Figure 9: The load comparison for 10,000 move operations on a single object: Left: Arrow and
MultiBend (the worst load per edge: Arrow 4986 at edge 172 and MultiBend 742 at edge 8); Right:
Ballistic and MultiBend (the worst load per edge: Ballistic 4986 at edge 172 and MultiBend 742 at
edge 8). The vertical lines show the number of times any edge is used by the algorithms while
serving 10,000 move operations.

slightly better than the performance of MultiBend because we do not consider the move-parent set
(leaders of limited number of clusters in each level that Ballistic visits in its directory) probing cost
of Ballistic. Arrow performs better due to nice neighbor growth and connection properties of the
grid network topology used in the experimentation. However, as shown in Fig. 9, MultiBend is the
only algorithm that balances the load of the network edges. In Arrow and Ballistic, the load on
some edges is proportional to the number of edges.

6 Future Directions and Concluding Remarks

Tightly-coupled Systems: A natural direction is to investigate the transaction scheduling prob-
lem for a combination of window-based model with the balanced workload model to achieve com-
petitive ratio close to O(

√
s) for windows of transactions. The significance of this is that the

previous bounds in the literature considered only one-shot problems and do not generalize well in

ACM SIGACT News 24 June 2014 Vol. 45, No. 2

the window-based model. For example, the bound of O(s) from [6] in the one-shot model becomes
O(s ·N) in the window-based model.

Another natural direction is to determine what is the smallest balancing ratio (number of writes
vs total number of reads and writes) that can maintain the same formal bounds in the balanced
workload model. Moreover, it is interesting to investigate special cases of transaction conflict graphs
which can enable makespan competitive ratios asymptotically smaller than O(

√
s). Such graphs can

represent interesting access patterns to shared resources. It is also interesting to consider scheduling
algorithms for mini-transactions – simple atomic operations on a small number of locations [5].

Further, it is interesting to investigate how is the performance affected when we take into account
the latency to access shared variables. Different processors may have different access times to the
shared variables because they may reside in different levels of the memory hierarchy and in different
caches. This affects both the lower and upper bounds of the makespan analysis. To properly model
the access time variance one idea is to consider a weighted conflict graph and derive new lower and
upper bounds on the makespan that take into account the edge weights of the graph. Moreover, it
is interesting to design and analyze transaction scheduling algorithm using different performance
metrics such as throughput, average response time, aborts per commit ratio, etc. Experimental
evaluations for (combinations of) these metrics appeared in several papers, e.g. [4, 28, 71]. It is
interesting also to experimentally evaluate these newly designed scheduling algorithms and existing
algorithms [4, 27, 36, 87].

Distributed Networked Systems: Ballistic, Relay, and Combine (and also Spiral) have all been
analyzed for a single shared object only. Thus, a natural extension is to handle multiple shared
objects ξ1, . . . , ξk. In order to handle the case of multiple objects, one idea is to follow a universal
TSP (traveling salesperson problem) approach [33, 38, 49]. A universal TSP approach computes a
TSP tour Q for all the nodes in the network by going through all the nodes in some specific order.
Now if we need to visit subset S of nodes inducing a sub-tour, the TSP tour Q approximates the
optimal tour for S (in the induced subgraph) within a factor of O(log4 n/ log log n) [49]. For each
shared object ξi, we can then compute an approximate TSP tour for the object which visits all the
nodes that have transactions that request the object (e.g. for move, namely, write operations, or
for lookup). The TSP tour for the object is obtained by visiting in sequence the involved nodes in
the universal TSP tour. For a transaction to execute in a node v, all the objects of the transaction
must appear in v. Once all the objects appear in v, the transaction executes and then each object
moves to the next node according to the order specified in their respective tours. Eventually,
all the transactions will execute. The use of a universal TSP guarantees that there will be no
deadlocks. In addition, the total communication cost of this approach will be close to optimal
(poly-log approximation), assuming that the TSP tours of the objects are good approximations
(typically, poly-log approximations). This idea will also be helpful in analyzing makespan.

For the experimental evaluation, it will be interesting to extend the HyFlow framework [66] − a
Java framework implementation for STM in distributed systems − by including the aforementioned
distributed directory algorithms. Moreover, it will be interesting to extend the STAMP benchmarks
that are originally designed for tightly-coupled TM systems to support distributed implementations
of the TM systems.

Non-uniform Memory Access Systems: For TM implementation in NUMA architectures,
it will be interesting to explore load and distance competitive ratio bounds of MultiBend for the

ACM SIGACT News 25 June 2014 Vol. 45, No. 2

case of d-dimensional networks with uneven dimensions. Moreover, it will be interesting to extend
MultiBend for dynamic networks where nodes join and leave the network over time and make it
fault-tolerant. This extension for dynamic networks also applies to algorithms designed for dis-
tributed networked systems (as existing algorithms can not handle dynamic networks). Moreover,
the problem of incorporating the consistency algorithms in a full-fledged distributed TM system
remains as an important open problem.

Acknowledgements

The authors would like to thank the editor Jennifer L. Welch for many thoughtful comments and
suggestions on the earlier draft of this article.

References

[1] Narasimha R. Adiga, Matthias A. Blumrich, Dong Chen, Paul Coteus, Alan Gara, Mark
Giampapa, Philip Heidelberger, Sarabjeet Singh, Burkhard D. Steinmacher-Burow, Todd
Takken, Mickey Tsao, and Pavlos Vranas. Blue gene/l torus interconnection network. IBM J.
Res. Dev., 49(2-3):265–276, 2005.

[2] Noga Alon, Gil Kalai, Moty Ricklin, and Larry J. Stockmeyer. Lower bounds on the com-
petitive ratio for mobile user tracking and distributed job scheduling. Theor. Comput. Sci.,
130(1):175–201, 1994.

[3] Mohammad Ansari, Christos Kotselidis, Mikel Lujan, Chris Kirkham, and Ian Watson. On
the performance of contention managers for complex transactional memory benchmarks. In
ISPDC, pages 83–90, 2009.

[4] Mohammad Ansari, Mikel Lujn, Christos Kotselidis, Kim Jarvis, Chris Kirkham, and Ian Wat-
son. Steal-on-abort: Improving transactional memory performance through dynamic transac-
tion reordering. In HiPEAC, pages 4–18, 2009.

[5] Hagit Attiya. The inherent complexity of transactional memory and what to do about it. In
PODC, pages 1–5, 2010.

[6] Hagit Attiya, Leah Epstein, Hadas Shachnai, and Tami Tamir. Transactional contention
management asanon-clairvoyant scheduling problem. Algorithmica, 57(1):44–61, 2010.

[7] Hagit Attiya, Vincent Gramoli, and Alessia Milani. A provably starvation-free distributed
directory protocol. In SSS, pages 405–419, 2010.

[8] Hagit Attiya and Alessia Milani. Transactional scheduling for read-dominated workloads. J.
Parallel Distrib. Comput., 72(10):1386–1396, 2012.

[9] Tongxin Bai, Xipeng Shen, Chengliang Zhang, William N. Scherer III, Chen Ding, and
Michael L. Scott. A key-based adaptive transactional memory executor. In IPDPS, pages
1–8, 2007.

ACM SIGACT News 26 June 2014 Vol. 45, No. 2

[10] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and Alexandra Fedorova. A case
for numa-aware contention management on multicore systems. In USENIXATC, pages 1–1,
2011.

[11] Geoffrey Blake, Ronald G. Dreslinski, and Trevor Mudge. Proactive transaction scheduling for
contention management. In MICRO, pages 156–167, 2009.

[12] Geoffrey Blake, Ronald G. Dreslinski, and Trevor Mudge. Bloom filter guided transaction
scheduling. In HPCA, pages 75–86, 2011.

[13] Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M. Swift, and David A. Wood. Tokentm:
Efficient execution of large transactions with hardware transactional memory. In ISCA, pages
127–138, 2008.

[14] Robert L. Bocchino, Vikram S. Adve, and Bradford L. Chamberlain. Software transactional
memory for large scale clusters. In PPoPP, pages 247–258, 2008.

[15] Costas Busch, Malik Magdon-Ismail, and Jing Xi. Optimal oblivious path selection on the
mesh. IEEE Trans. Comput., 57(5):660–671, 2008.

[16] João Cachopo and António Rito-Silva. Versioned boxes as the basis for memory transactions.
Sci. Comput. Program., 63(2):172–185, 2006.

[17] Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco, Virendra J. Marathe, and Nir Shavit.
Numa-aware reader-writer locks. In PPoPP, pages 157–166, 2013.

[18] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP: Stanford
transactional applications for multi-processing. In IISWC, pages 35–46, 2008.

[19] Dong Chen, Noel Eisley, Philip Heidelberger, Sameer Kumar, Amith Mamidala, Fabrizio
Petrini, Robert Senger, Yutaka Sugawara, Robert Walkup, Burkhard Steinmacher-Burow,
Anamitra Choudhury, Yogish Sabharwal, Swati Singhal, and Jeffrey J. Parker. Looking under
the hood of the ibm blue gene/q network. In SC, pages 69:1–69:12, 2012.

[20] Intel Corporation. http://software.intel.com/en-us/blogs/2012/02/07/

transactional-synchronization-in-haswell.

[21] Intel Corporation. A first look at the intel quickpath interconnect. http://www.intel.com/

intelpress/files/A_First_Look_at_the_Intel(r)_QuickPath_Interconnect.pdf.

[22] Intel Corporation. Who moved the goal posts? the rapidly chang-
ing world of cpus. http://software.intel.com/en-us/articles/

who-moved-the-goal-posts-the-rapidly-changing-world-of-cpus/.

[23] Maria Couceiro, Paolo Romano, Nuno Carvalho, and Lúıs Rodrigues. D2stm: Dependable
distributed software transactional memory. In PRDC, pages 307–313, 2009.

[24] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec: Streamlining stm by
abolishing ownership records. In PPoPP, pages 67–78, 2010.

ACM SIGACT News 27 June 2014 Vol. 45, No. 2

[25] Michael J. Demmer and Maurice P. Herlihy. The arrow distributed directory protocol. DISC,
pages 119–133, 1998.

[26] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In DISC, pages 194–208,
2006.

[27] Shlomi Dolev, Danny Hendler, and Adi Suissa. CAR-STM: scheduling-based collision avoid-
ance and resolution for software transactional memory. In PODC, pages 125–134, 2008.

[28] Aleksandar Dragojević, Rachid Guerraoui, Anmol V. Singh, and Vasu Singh. Preventing versus
curing: avoiding conflicts in transactional memories. In PODC, pages 7–16, 2009.

[29] Paul Erdős and Alfréd Rényi. On random graphs I. Publ. Math. Debrecen, 6:290–297, 1959.

[30] Pascal Felber, Christof Fetzer, Patrick Marlier, and Torvald Riegel. Time-based software
transactional memory. IEEE Trans. Parallel Distrib. Syst., 21(12):1793–1807, 2010.

[31] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic performance tuning of word-based
software transactional memory. In PPoPP, pages 237–246, 2008.

[32] Wilson W. L. Fung, Inderpreet Singh, Andrew Brownsword, and Tor M. Aamodt. Hardware
transactional memory for gpu architectures. In MICRO, pages 296–307, 2011.

[33] Igor Gorodezky, Robert D. Kleinberg, David B. Shmoys, and Gwen Spencer. Improved lower
bounds for the universal and a priori tsp. In APPROX/RANDOM, pages 178–191, 2010.

[34] R. Guerraoui, M. Herlihy, M. Kapalka, and B. Pochon. Robust Contention Management in
Software Transactional Memory. In SCOOL, pages 1–8, 2005.

[35] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Polymorphic contention manage-
ment. In DISC, pages 303–323. 2005.

[36] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Toward a theory of transactional
contention managers. In PODC, pages 258–264, 2005.

[37] Anupam Gupta, Mohammad T. Hajiaghayi, and Harald Räcke. Oblivious network design. In
SODA, pages 970–979, 2006.

[38] Mohammad T. Hajiaghayi, Robert Kleinberg, and Tom Leighton. Improved lower and upper
bounds for universal tsp in planar metrics. In SODA, pages 649–658, 2006.

[39] Ruud Haring, Martin Ohmacht, Thomas Fox, Michael Gschwind, David Satterfield, Krishnan
Sugavanam, Paul Coteus, Philip Heidelberger, Matthias Blumrich, Robert Wisniewski, Alan
Gara, George Chiu, Peter Boyle, Norman Chist, and Changhoan Kim. The ibm blue gene/q
compute chip. IEEE Micro, 32(2):48–60, 2012.

[40] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory, 2Nd Edition. Morgan
and Claypool Publishers, 2nd edition, 2010.

[41] D. Hasenfratz, J. Schneider, and R. Wattenhofer. Transactional memory: How to perform
load adaption in a simple and distributed manner. In HPCS, pages 163 –170, 2010.

ACM SIGACT News 28 June 2014 Vol. 45, No. 2

[42] Danny Hendler, Alex Naiman, Sebastiano Peluso, Francesco Quaglia, Paolo Romano, and Adi
Suissa. Exploiting locality in lease-based replicated transactional memory via task migration.
In DISC, pages 121–133, 2013.

[43] Maurice Herlihy, Fabian Kuhn, Srikanta Tirthapura, and Roger Wattenhofer. Dynamic anal-
ysis of the arrow distributed protocol. Theor. Comp. Syst., 39(6):875–901, 2006.

[44] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Software trans-
actional memory for dynamic-sized data structures. In PODC, pages 92–101, 2003.

[45] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for lock-
free data structures. In ISCA, pages 289–300, 1993.

[46] Maurice Herlihy and Ye Sun. Distributed transactional memory for metric-space networks.
Distrib. Comput., 20(3):195–208, 2007.

[47] Maurice Herlihy, Srikanta Tirthapura, and Rogert Wattenhofer. Competitive concurrent dis-
tributed queuing. In PODC, pages 127–133, 2001.

[48] Cray Inc. Cray xtTM system overview. http://docs.cray.com/books/S-2423-22/

S-2423-22.pdf.

[49] Lujun Jia, Guolong Lin, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sundaram. Uni-
versal approximations for tsp, steiner tree, and set cover. In STOC, pages 386–395, 2005.

[50] S. Khot. Improved inapproximability results for maxclique, chromatic number and approximate
graph coloring. In FOCS, pages 600–609, 2001.

[51] Junwhan Kim and B. Ravindran. Scheduling transactions in replicated distributed software
transactional memory. In CCGrid, pages 227–234, 2013.

[52] Junwhan Kim and Binoy Ravindran. On transactional scheduling in distributed transactional
memory ystems. In SSS, pages 347–361, 2010.

[53] Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Lujn, Chris Kirkham, and Ian
Watson. Distm: A software transactional memory framework for clusters. In ICPP, pages
51–58, 2008.

[54] Fabian Kuhn and Rogert Wattenhofer. Dynamic analysis of the arrow distributed protocol.
In SPAA, pages 294–301, 2004.

[55] Frank Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publishers, 1991.

[56] Kai Lu, Ruibo Wang, and Xicheng Lu. Brief announcement: Numa-aware transactional mem-
ory. In PODC, pages 69–70, 2010.

[57] B. Maggs, F. Meyer auf der Heide, B. Voecking, and M. Westermann. Exploiting locality for
data management in systems of limited bandwidth. In FOCS, pages 284–293, 1997.

ACM SIGACT News 29 June 2014 Vol. 45, No. 2

[58] Walther Maldonado, Patrick Marlier, Pascal Felber, Adi Suissa, Danny Hendler, Alexandra
Fedorova, Julia L. Lawall, and Gilles Muller. Scheduling support for transactional memory
contention management. In PPoPP, pages 79–90, 2010.

[59] Kaloian Manassiev, Madalin Mihailescu, and Cristiana Amza. Exploiting distributed version
concurrency in a transactional memory cluster. In PPoPP, pages 198–208, 2006.

[60] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David Eisenstat,
William N. Scherer III, and Michael L. Scott. Lowering the overhead of nonblocking software
transactional memory. In TRANSACT, pages 1–11, 2006.

[61] Hany E. Ramadan, Christopher J. Rossbach, Donald E. Porter, Owen S. Hofmann, Aditya
Bhandari, and Emmett Witchel. Metatm/txlinux: Transactional memory for an operating
system. IEEE Micro, 28(1):42–51, 2008.

[62] Kerry Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Trans. Com-
put. Syst., 7(1):61–77, 1989.

[63] Paolo Romano, Luis Rodrigues, Nuno Carvalho, and Joäo Cachopo. Cloud-tm: harnessing the
cloud with distributed transactional memories. SIGOPS Oper. Syst. Rev., 44(2):1–6, 2010.

[64] Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. Is transactional program-
ming actually easier? In PPoPP, pages 47–56, 2010.

[65] Mohamed M. Saad and Binoy Ravindran. Snake: control flow distributed software transac-
tional memory. In SSS, pages 238–252, 2011.

[66] Mohamed M. Saad and Binoy Ravindran. Supporting stm in distributed systems: Mechanisms
and a java framework. In TRANSACT, pages 1–9. 2011.

[67] David Sainz and Hagit Attiya. Relstm: A proactive transactional memory scheduler. In
TRANSACT, pages 1–8, 2013.

[68] William N. Scherer, III and Michael L. Scott. Advanced contention management for dynamic
software transactional memory. In PODC, pages 240–248, 2005.

[69] William N. Scherer III and Michael L. Scott. Contention management in dynamic software
transactional memory. In Proceedings of the ACM PODC Workshop on Concurrency and
Synchronization in Java Programs (CSJP), St. John’s, NL, Canada, Jul 2004.

[70] Johannes Schneider and Roger Wattenhofer. Bounds on contention management algorithms.
Theor. Comput. Sci., 412(32):4151–4160, 2011.

[71] Gokarna Sharma and Costas Busch. A competitive analysis for balanced transactional memory
workloads. In OPODIS, pages 348–363, 2010.

[72] Gokarna Sharma and Costas Busch. On the performance of window-based contention managers
for transactional memory. In APDCM, pages 559–568, 2011.

[73] Gokarna Sharma and Costas Busch. A competitive analysis for balanced transactional memory
workloads. Algorithmica, 63(1-2):296–322, 2012.

ACM SIGACT News 30 June 2014 Vol. 45, No. 2

[74] Gokarna Sharma and Costas Busch. Towards load balanced distributed transactional memory.
In Euro-Par, pages 403–414, 2012.

[75] Gokarna Sharma and Costas Busch. Window-based greedy contention management for trans-
actional memory: Theory and practice. Distrib. Comput., 25(3):225–248, 2012.

[76] Gokarna Sharma and Costas Busch. An analysis framework for distributed hierarchical direc-
tories. Algorithmica, Preprint:1–32, 2013.

[77] Gokarna Sharma and Costas Busch. An analysis framework for distributed hierarchical direc-
tories. In ICDCN, pages 378–392, 2013.

[78] Gokarna Sharma and Costas Busch. Distributed transactional memory for general networks.
Distrib. Comput., Preprint:1–34, 2014.

[79] Gokarna Sharma, Costas Busch, and Srinivas Srinivasagopalan. Distributed transactional
memory for general networks. In IPDPS, pages 1045–1056, 2012.

[80] Gokarna Sharma, Brett Estrade, and Costas Busch. Window-based greedy contention man-
agement for transactional memory. In DISC, pages 64–78, 2010.

[81] Nir Shavit and Dan Touitou. Software transactional memory. Distrib. Comput., 10(2):99–116,
1997.

[82] Michael F. Spear, Luke Dalessandro, Virendra J. Marathe, and Michael L. Scott. A compre-
hensive strategy for contention management in software transactional memory. In PPoPP,
pages 141–150, 2009.

[83] Michael F. Spear, Virendra J. Marathe, William N. Scherer, and Michael L. Scott. Conflict
detection and validation strategies for software transactional memory. In DISC, pages 179–193,
2006.

[84] Amy Wang, Matthew Gaudet, Peng Wu, José Nelson Amaral, Martin Ohmacht, Christopher
Barton, Raul Silvera, and Maged Michael. Evaluation of blue gene/q hardware support for
transactional memories. In PACT, pages 127–136, 2012.

[85] Ruibo Wang, Kai Lu, and Xicheng Lu. Investigating transactional memory performance on
ccnuma machines. In HPDC, pages 67–68, 2009.

[86] Yunlong Xu, Rui Wang, Nilanjan Goswami, Tao Li, Lan Gao, and Depei Qian. Software
transactional memory for gpu architectures. In CGO, pages 1:1–1:10, 2014.

[87] Richard M. Yoo and Hsien-Hsin S. Lee. Adaptive transaction scheduling for transactional
memory systems. In SPAA, pages 169–178, 2008.

[88] Bo Zhang and Binoy Ravindran. Relay: A cache-coherence protocol for distributed transac-
tional memory. In OPODIS, pages 48–53, 2009.

[89] Bo Zhang and Binoy Ravindran. Dynamic analysis of the relay cache-coherence protocol for
distributed transactional memory. In IPDPS, pages 1–11, 2010.

ACM SIGACT News 31 June 2014 Vol. 45, No. 2

